ELECTRONIC NOSE AND PROBABILISTIC NEURAL NETWORK USE FOR SAUSAGES IDENTIFICATION
UDC 637.07:637.068
Keywords:
electronic nose, probabilistic neural network, identification, cooked sausagesAbstract
The electronic nose system based on seven quartz-microbalance sensors was used to generate a pattern of the volatile compounds present in sausage samples with different mass content of soy protein isolate (SPI) ranging from 0 to 30% w/w. The original response curve was extracted to two features such as the maximum response value (ΔFimax, Hz) and area values of sensor response curve and time axis surrounded (Si, Hz×s). All parameters subjected to pattern recognition analysis in original, normalised, scaling values and after principal component analysis. In this paper we used probabilistic neural network (PNN) for multiclass discrimination of sausage products. The neural network architecture was optimized for samples discrimination using as input vectors the electronic nose parameters such as Si and ΔFimax. The best classification reliability (95,8%) for model based on dataset of Si in original values obtained with the values of the PNN smoothing parameter σ in the range from 3,6 to 54,0. The classification model built by ΔFimax dataset in original values gave the 100% identification accuracy with the value of the PNN smoothing parameter in the range from 0,2 to 1,0. Furthermore, the different pre-processing techniques applied to datasets led to a slight decrease the prediction performance of the classification models, but the speed of neural network training has increased.
This paper presents a novel approach to identification of cooked sausages and determination of soy products mass content using the electronic nose combined with probabilistic neural network. Compared to classical methods, this new approach could represent an alternative and innovative tool for faster and cheaper sausage identification and mass content of soy protein isolate (0, 10, 20, 30% w/w) detection.
References
1. Ковбаси варені, сосиски, сардельки, хліби м'ясні: ДСТУ 4436-2005. Чинний від 2006.07.01. К.: Держспоживстандарт України, 2006, 32 с.
Boiled sausages, frankfurters, sardellas, meat loaves: DSTU 4436-2005. 2006.07.01. Kyiv, Derzhspozhivstandart Ukraini, 2006, 32 p.
2. Russell T. A. Comparison of sensory properties of whey and soy protein concentrates and isolates: a thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Master of Science Department of Food Science. Raleig. 2004, 132 p.
3. Boatright W.L., Lei Q. J. Food Sci., 2000, 65, P. 819–821.
4. Шпичка А.И., Семенова Е.Ф. Фундаментальные исследования, 2013, 8, С. 1113–1124.
Shpichka A.I., Semenova Ye. F. Fundamental'nye issledovanija, 2013, 8, P. 1113–1124.
5. Мясо и мясные продукты. Метод гистологической идентификации состава: ГОСТ Р 51604-2000. Введён в действие 2000.05.12. М.: Госстандарт России, 2000,11 с.
Meat and meat products. Method of histological identification of composition: GOST R 51604-2000. 2000.05.12. Moscow, Gosstandart Rossii, 2000, 11 p.
6. Прошкин Л. В. Ветеринарно-санитарная экспертиза и методы определения качества и безопасности колбасных изделий. Автореф. дис. на соиск. уч. степени канд. вет. наук, СПб., 2011, 30 с.
Proshkin L. V. Veterinary and sanitary expertise and methods of quality and safety evaluation of the sausage products. Abstract of thesis for candidata's degree, SPb., 2011, 30 p.
7. Мясо и мясные продукты. Определение массовой доли растите-льного (соевого белка) методом электрофореза: ГОСТ Р 53220-2008. Введён в действие 2010.01.01. М.: Стандартинформ, 2009, 12 с.
Meat and meat products. Electrophoretic method of determination of soy proteins mass content: GOST R 53220-2008. 2010.01.01. Moscow, Standartinform, 2009, 12 p.
8. Demuth H., Beale M. Neural Network Toolbox User's Guide. The MathWorks Inc., 2002, 840 p.
9. Esbensen Kim H. Multivariate Data Analysis – in practice. An Introduction to Multivariate Data Analysis and Experimental Design, 5th Edition. Aalborg University, Esbjerg. Oslo: Camo Process AS, 2004, 54–65.
10. Tran D. H., NG A. W. M., Perera B. J. C., Burn S., Davis P. Urban Water J., 2006, 3 (3), 175–184.
11. Rios A., Barcelo D., Buydens L., Cardenas S., Heydorn K., Karlberg B., Klemm K., Lendl B., Milman B., Neidhart B., Stephany R. W., Townshend A., Zschunke A., Valcarcel M. Accredit. Qual. Assur., 2003, 8, 68–77.
12. Specht D. F. Neural Netw., 1990, 3, 109–118.
Downloads
Published
Issue
Section
License
Copyright (c) 2018 А. Калініченко, наук. співроб., Л. Арсеньєва, д-р техн. наук, В. Пасічний, д-р техн. наук

This work is licensed under a Creative Commons Attribution 4.0 International License.
