CALCULATION OF PKA OF PHENOLS AND THIOLS AS A MODEL TO EVALUATE THE ACIDITY OF CATALYSTS ON ACTIVATED CHARCOAL
UDC 541.128
Keywords:
activated charcoal, acidity, catalysisAbstract
It was calculated a pKa values for set of the phenols and thiols. The pKa values don't deviate from its experimental values more than one unit. Tested method can be applied to theoretical predication of the acidity of activated charcoal catalyst with different functional groups on its surface.
References
1. Реакционная способность двойных связей в активированном угле: квантово-химическое исследование / Д. А. Быков, А. Н. Задерко, А. М. Дацюк [и др.] // Теор. Эксперим. химия. – 2008. – Т. 44, № 1. – С. 30–34.
2. Avoiding gas-phase calculations in theoretical pKa predictions / R. Casasnovas, D. Fernandez, J. Ortega-Castro [et al.] // Theor. Chem. Acc. – 2011. – Vol. 130. – P. 1−13.
3. Schmidt am Busch M. Accurate pKa determination for a heterogeneous group of organic molecules / M. Schmidt am Busch, E.W. Knapp // ChemPhysChem. – 2004. – Vol. 5. – P. 1513–1522.
4. Zhang S. Reliable and efficient first principles-based method for predicting pKa Values. 1. Methodology / S. Zhang, J. Baker, P. Pulay // J. Phys. Chem. – 2010. – Vol. 114. – P.425–431.
5. Бондар Г. М. Квантово-механічний розрахунок рКа для фенолів та тіолів // Збірка тез доповідей Чотирнадцятої Міжнародної конференції студентів та аспірантів "Сучасні проблеми хімії", Київ 15-17 травня 2013. – К., 2013. – С.136.
6. ORCA An ab initio, DFT and semiempirical SCF-MO package ORCA Version 2.8 Users Guide. – 2010. – http://www.mpibac.mpg.de/bac/logins/ neese/description.php.
7. Schäfer A. Fully optimized contracted gaussian basis sets for atoms Li to Kr / A. Schäfer, H. Horn, R. Ahlrichs // J. Chem. Phys. – 1992. – Vol. 97, No. 4. – P. 2571–2577.
8. Zhang S. A reliable and efficient first principles-based method for predicting pKa Values. 2. Organic Acids / S. Zhang, J. Baker, P. Pulay // J. Phys. Chem. A. – 2010. – Vol. 114, No. 1. – P. 432–442.
9. Kebarle P. Intrinsic acidities of substituted phenols and benzoic acids determined by gas phase proton transfer equilibriuns / P. Kebarle, T.B. McMahon // J. Am. Chem. Soc. – 1977. – Vol. 99. – P. 2222–2230.
10. MacKay G. J. Absolute gas-phase acidities of CH3NH2, C2H5NH2, (CH3)2NH, and (CH3)3N / G. J. MacKay, R. S. Hemsworth, D. K. Bohme // Can. J. Chem. – 1976. – Vol. 54. – P. 1624–1642.
11. Cumming J. B. Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A) / J. B. Cumming, P. Kebarle // Can. J. Chem. – 1978. – Vol. 56. – P. 1–9.
12. Caldwell G. Gas phase acidities of aliphatic carboxylic acids, based on measurements of proton transfer equilibria / G.Caldwell, R. Renneboog, P. Kebarle // Can. J. Chem. – 1989. – Vol. 67. – P. 611–618.
13. Bartmess J. E. Scale of acidities in the gas phase acidity scale from methanol to phenol / J. E. Bartmess, J. A. Scott, R. T. McIver Jr. // J. Am. Chem. Soc. – 1979. – Vol. 101. – P. 6046–6056.
14. Karty J. M. The RS-center dot HSR hydrogen bond: acidities of alpha,omega- dithiols and electron affinities of their monoradicals / J.M. Karty, Y. S. Wu, J. I. Brauman // J. Am.Chem.Soc. – 2001. – Vol. 123. – P. 9800–9805.
15. Taft R. W. Structural and solvent effects evaluated from acidities measured in dimethyl sulfoxide and in the gas phase / R. W. Taft, F. G. Bordwell // Acc. Chem. Res. – 1988. – Vol. 21. – P. 463–469.
16. Acidity trends in alpha,beta-unsaturated sulfur, selenium, and tellurium derivatives: comparison with C-, Si-, Ge-, Sn-, N-, P-, As-, and Sb-containing analogues / J. C. Guillemin, E. H. Riague, J. F. Gal [et al.] // Chem.Eur.J. – 2005. – Vol. 11. – P. 2145–2153.
Downloads
Published
Issue
Section
License
Copyright (c) 2013 А. Яцимирський, канд. хім. наук

This work is licensed under a Creative Commons Attribution 4.0 International License.
