SYNTHESIS OF A 1,2,3-TRIAZOLE-CONTAINING MACROCYCLE BASEDON THE "CLICK CHEMISTRY" REACTION AND ANALYSISOF ITS PLANAR CHIRALITY USING NMR AND DFT CALCULATIONS

DOI: https://doi.org/10.17721/1728-2209.2020.1(57).14

Authors

  • Hanna Yampolska Taras Shevchenko National University of Kyiv , Enamine Ltd.
  • Serhii Kharchenko Enamine Ltd.
  • Andriy Kozytskyi L. V. Pisarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine , Enamine Ltd.
  • Andriy Kyrylchuk Institute of Organic Chemistry, National Academy of Sciences of Ukraine
  • Zoya Voitenko Taras Shevchenko National University of Kyiv image/svg+xml
  • Oleksandr Grygorenko Taras Schevchenko National University of Kyiv; Enamine Ltd. https://orcid.org/0000-0002-6036-5859

Keywords:

macrocycle, click chemistry, planar chirality, NMR, DFT calculations

Abstract

Macrocycles represent previously unexplored promising drug candidates, that can be useful for treating protein-protein interactions. Atropoisomerism is an inherent feature of the natural macrocyclic peptides that is significant for their activity and selectivity, and, therefore, should be introduced into newly synthesized macrocycles. Synthesis of the libraries of artificial macrocycles faces many challenges due to their structure and size. Herein we report on the preparation of a 16-membered macrocycle containing 1,2,3-triazole ring, spiro-piperidine, and phenyl moieties, as well as a chiral carbon atom. Our approach to the macrocycle was inspired by the “build/couple/pair” (B/C/P) strategy, a part of diversity-oriented synthesis methodology. We have employed readily accessible starting materials and robust synthetic procedures which allowed us to obtain the target macrocycle in a high yield. Standard methods of amide bond formation were used for the coupling of macrocycle building blocks. Click chemistry azide-alkyne cycloaddition was exploited at the final ring closure step. The assignment of signals in 1H and 13C NMR spectra of the macrocycle was performed using a series of 2D NMR techniques. The macrocycle displayed planar chirality, which, in a combination with a stereocenter with the known configuration, was sufficient to propose possible structures of diastereomers. The diastereomers could differ by the relative position of triazole ring. Their racemization could occur through a “rope skipping” motion involving the cyclic chain crossing the plane of 1,2,3-triazole ring. The supposed structures of diastereomers were corroborated by means of a various NMR spectroscopy techniques and DFT calculations. Analysis of the amide NH chemical shift temperature coefficients coupled with the data on optimized geometries obtained by DFT convincingly demonstrated that the intramolecular hydrogen bonds play a major role in stabilization of the diastereomer structures. According to the variable temperature NMR experiment, the interconversion of two diastereomers did not occur even at heating up to 70 °C.

References

1. Driggers E. M. The exploration of macrocycles for drug discovery - an underexploited structural class / E. M. Driggers, S. P. Hale, J. Lee, N. K. Terrett // Nat. Rev. Drug Discov. – 2008. – Vol. 7. – №. 7. – P. 608–624.

2. Mallinson J. Macrocycles in new drug discovery / J. Mallinson, I. Collins // Future Med. Chem. – 2012. – Vol. 4, № 11. – P. 1409–1438.

3. Abdelraheem E. M. M. Artificial macrocycles / E. M. M. Abdelraheem, S. Shaabani, A. Dömling // Synlett. – 2018. – Vol. 29. – № 9. – P. 1136–1151.

4. Yudin A. K. Introduction: macrocycles / A. K. Yudin // Chem. Rev. – 2019. – Vol. 119. – № 17. – P. 9723.

5. Dougherty P. G. Macrocycles as protein-protein interaction inhibitors / P. G. Dougherty, Z. Qian, D. Pei // Biochem. J. – 2017. – Vol. 474. – № 7. – P. 1109–1125.

6. Structure-based design of non-natural macrocyclic peptides that inhibit protein-protein interactions / D. M. Krüger, A. Glas, D. Bier, N. Pospiech, K. Wallraven, L. Dietrich, C. Ottmann, O. Koch, S. Hennig, T.N. Grossmann // J. Med. Chem. – 2017. – Vol. 60. – № 21. – P. 8982–8988.

7. Macrocyclic peptides as regulators of protein-protein interactions / Y. Jiang, H. Long, Y. Zhu, Y. Zeng // Chinese Chem. Lett. – 2018. – Vol. 29. – № 7. – P. 1067–1073.

8. Schreiber S. L. Target-oriented and diversity-oriented organic synthesis in drug discovery / S. L. Schreiber // Science. – 2000. – Vol. 287. – № 5460. – P. 1964–1969.

9. A diversity-oriented synthesis strategy enabling the combinatorial-type variation of macrocyclic peptidomimetic scaffolds / A. Isidro-Llobet, K. Hadje Georgiou, W. R. J. D. Galloway, E. Giacomini, M.R. Hansen, G. Méndez-Abt, Y.S. Tan, L. Carro, H.F. Sore, D.R. Spring // Org. Biomol. Chem. – 2015. – Vol. 13. – № 15. – P. 4570–4580.

10. Modular synthesis of diverse natural product-like macrocycles: discovery of hits with antimycobacterial activity / M. Dow, F. Marchetti, K. A. Abrahams, L. Vaz, G.S. Besra, S. Warriner, A. Nelson // Chem. Eur. J. – 2017. – Vol. 23. – № 30. – P. 7207–7211.

11. The synthesis of structurally diverse macrocycles by successive ring expansion / C. Kitsiou, J. J. Hindes, P. I'Anson, P. Jackson, T. C. Wilson, E. K. Daly, H. R. Felstead, P. Hearnshaw, W. P. Unsworth // Angew. Chem. Int. Ed. – 2015. – Vol. 54. – № 52. – P. 15794–15798.

12. Kolb H. C. Click chemistry: diverse chemical function from a few good reactions / H. C. Kolb, M. G. Finn, K. B. Sharpless // Angew. Chem. Int. Ed. – 2001. – Vol. 40. – № 11. – P. 2004–2021.

13. Biocatalytic synthesis of planar chiral macrocycles / C. Gagnon, É. Godin, C. Minozzi, J. Sosoe, C. Pochet, S. K. Collins // Science. – 2020. – Vol. 367. – № 6480. – P. 917–921.

14. Armarego W. L. F. Purification of laboratory chemicals. 6th ed. / W. L. F. Armarego, C. Chai. – Butterworth-Heinemann : Elsevier, 2009.

15. Electronic structure calculations on workstation computers: the program system turbomole / R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel // Chem. Phys. Lett. – 1989. – Vol. 162. – № 3. – P. 165–169.

16. Furche F. Turbomole / F. Furche, R. Ahlrichs, C. Hättig, W. Klopper, M. Sierka, F. Weigend // Wiley Interdiscip. Rev. Comput. Mol. Sci. – 2014. – Vol. 4. – № 2. – P. 91–100.

17. Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior / A. D. Becke // Phys. Rev. A. – 1988. – Vol. 38. – № 6. – P. 3098–3100.

18. Perdew J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas / J. P. Perdew // Phys. Rev. B. – 1986. – Vol. 33. – № 12. – P. 8822–8824.

19. Whitten J. L. Coulombic potential energy integrals and approximations / J. L. Whitten // J. Chem. Phys.– 1973. – Vol. 58. – № 10. – P. 4496–4501.

20. Dunlap B. I. On some approximations in applications of Xα theory / B. I. Dunlap, J. W. D. Connolly, J. R. Sabin // J. Chem. Phys. – 1979. – Vol. 71. – № 8. – P. 3396.

21. Vahtras O. Integral approximations for LCAO-SCF calculations / O. Vahtras, J. Almlöf, M. W. Feyereisen // Chem. Phys. Lett. – 1993. – Vol. 213. – № 5–6. – P. 514–518.

22. Auxiliary basis sets to approximate coulomb potentials / K. Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs // Chem. Phys. Lett. – 1995. – Vol. 240. – № 4. – P. 283–289.

23. Schäfer A. Fully optimized contracted gaussian basis sets of triple zeta valence quality for atoms Li to Kr / A. Schäfer, C. Huber, R. Ahlrichs // J. Chem. Phys. – 1994. – Vol. 100. – № 8. – P. 5829–5835.

24. Planar chirality of imidazole-containing macrocycles-understanding and tuning atropisomerism / E. Van Den Berge, J. Pospíšil, T. Trieu-Van, L. Collard, R. Robiette // Eur. J. Org. Chem. – 2011. – Vol. 2011. – № 33. – P. 6649–6655.

25. Hong J. The protein amide 1HN chemical shift temperature coefficient reflects thermal expansion of the N–H···O=C hydrogen bond / J. Hong, Q. Jing, L. Yao // J. Biomol. NMR. – 2013. – Vol. 55. – № 1. – P. 71–78.

26. Hydrogen bonds in human ubiquitin reflected in temperature coefficients of amide protons / T. Cierpicki, I. Zhukov, R. A. Byrd, J. Otlewski // J. Magn. Reson. – 2002. – Vol. 157. – № 2. – P. 178–180.

Downloads

Published

2026-01-08

How to Cite

SYNTHESIS OF A 1,2,3-TRIAZOLE-CONTAINING MACROCYCLE BASEDON THE "CLICK CHEMISTRY" REACTION AND ANALYSISOF ITS PLANAR CHIRALITY USING NMR AND DFT CALCULATIONS: DOI: https://doi.org/10.17721/1728-2209.2020.1(57).14. (2026). Bulletin of the Taras Shevchenko National University of Kyiv. Chemistry, 57(1), 55-61. https://chemistry.bulletin.knu.ua/article/view/8359

Most read articles by the same author(s)