DETERMINATION OF ORTHOPHOSPHATE IN WATER BY SOLID-PHASE CHEMILUMINESCENT METHOD
DOI: https://doi.org/10.17721/1728-2209.2020.1(57).17
Keywords:
phosphate, lucigenin, solid-phase chemiluminescence, artesian waterAbstract
Phosphorus is one of the most important nutrients. Excessive content of its compounds in water objects leads to eutrophication, as well as reduces water quality. Methods based on the formation of molybdophosphate heteropolyacid (HPA) in an acidic medium with its subsequent reduction and spectrophotometric detection of the formed reduced "blue" HPA are most often used to determine phosphorus compounds. These methods are unsuitable for the analysis of waters with a phosphorus content <40 μg/L. The use of the chemiluminescent method (CL) makes it possible to increase the sensitivity of the determination, but CL detection in an acidic medium under the conditions of formation of HPA is limited by the existing indicator systems. To increase the selectivity of the method for determining the microquantities of phosphate relative to metal ions, we used an approach based on the adsorption removal of analyte with next determination using the CL method. Previous removal of phosphate from an aqueous solution in the form of reduced molybdostibiumphosphate HPA was released using batch technique in optimal conditions of its formation in the solution. Silica modified with cetyltrimethylammonium bromide was used as anion exchange adsorbent. Then the concentrate was processed with alkaline lucigenin solution and registration of the CL glow resulting from the reaction. Under optimal conditions of phosphate determination, the calibration curve is linear in the range from 3.7 to 147 μg PO43–/L with a detection limit of 0.8 μg PO43–/L. Cations K+, Na+, Fe(III), Mo(VI), NH4+ and anions Cl-, F–, HCO3–, С4Н4О62–, Asc–, NO2–, SO42–, as well as EDTA, do not interfere. Silicates (SiO32–) do not interfere with the determination of phosphate, even in 100-fold excess. Nitrates at concentrations below the average content in drinking water do not interfere with the determination. The developed technique was tested on a sample of pump room water. The technique is characterized by high sensitivity and a wide range of detectable concentrations. It is not inferior in sensitivity to flow methods using fluorescent or chemiluminescent detection.
References
1. Kozhevnikov I.V. Russ. Chem. Rev., 1993, 62 (5), 473–491.
2. Panasyuk N., Tkachenko Y., Tkach V. Visnyk of the Lviv University. Series Chemistry. 2012. Issue 53. P. 208–215 (in Ukrainian).
3. Vidybida A.K., Usenko A.S., Kukla A.L., Pavluchenko A.S., Posudievsky O.Yu., Pokhodenko V.D. Sensor Electronics and Microsystem Technologies, 2006, 4, 67–75 (in Ukrainian).
4. Zubko O.M., Tkach V.I. Voprosy khimii i khimicheskoj tekhnologii, 2014, 1, 75–79. (in Russian).
5. Kachan I.A., Zaporozhets O.A., Zinko L.S., Koval A.A. Methods and Objects of Chemical Analysis, 2006, 1(2), 127–132 (in Russian).
6. Zaporozhets O.A., Kachan I.A., Zinko L.S. Adsorpt. Sci. Technol., 2011, 29, 319–330.
7. Zaporozhets O.A., Zinko L.S., Kachan I.A. J. Anal. Chem., 2007, 62, 1146–1150.
8. Nabyvanets B.I., Osadchyi V.I., Osadcha N.M., Nabyvanets Yu.B. Analytical chemistry of surface waters. Kyiv, Naukova dumka, 2007. (in Ukrainian)
9. Smith V.H. Environ Sci. Pollut. Res., 2003, 10(2), 126–139.
10. Parkhomenko A.V., Kirikova M.V. Marine ecological journal, 2004, 3(2), 54–71. (in Russian).
11. Masahiko K., Toshiko N., Mitsuhiko T. Anal. Sci., 1991, 7, 87–91.
12. Perez-Ruiz T., Martinez-Lozano C., Tomas V. Anal. Chim. Acta, 2001, 442(1), 147–153.
13. Zui O.V. Zavodskaya laboratoriya. Diagnostika materialov, 2009, 75(6), 5–12. (in Russian).
14. Liang Y., Yuan D., Li Q., Lin Q. Anal. Chim. Acta., 2006, 571 (2), 184–190
15. Estela J.M., Cerda V. Talanta, 2005, 66(2), 307–331.
16. Gray S., Hanrahan G., McKelvie I., Tappin A., Tse F., Worsfold P. Environ. Chem., 2006, 3, 3–18.
17. Motomizu S., Li Z.H. Talanta, 2005, 66(2), 332–340.
18. Miro M., Estela J.M., Cerda V. Talanta, 2003, 60(5), 867–886
19. Taniai T., Sukegawa M., Sakuragawa A., Uzawa A. Talanta, 2003, 61(6), 905–912.
20. Attiq-ur-Rehman, Yaqoob M., Waseem A., Nabi A., Khan M. Intern. J. Environ. Anal. Chem., 2010, 90(14–15), 1119–1129.
21. Yaqoob M., Nabi A., Worsfold P.J. Anal. Chim. Acta, 2004, 510(2), 213–218.
22. Starova T.V., Vishnikin A.B., Tsiganok L.P. Methods and Objects of Chemical Analysis, 2007, 2(2), 162–168 (in Russian)
23. Sukhan V., Trokhimenko O., Klokova Z. Visnyk Kyivs'koho natsional'noho universytetu imeni Tarasa Shevchenka. Khimiia, 2006, 43, 16–18. (in Ukrainian).
24. Zaporozhets O.A., Kachan I.A., Zinko L.S., Yevlash Yu.P., Levchenko S.I. Kharkov University Bulletin. Chemical Series, 2007, 770, 15(38), 155–162. (in Ukrainian).
25. Zui O.V., Birks J.W. Anal. Chem., 2000, 72(7), 1699–1703
26. Zui O.V. J. Water Chem. Technol., 2007, 29, 90–95.
27. Korostelev P.P. Preparation of solutions for chemical and analytical work, Moscow, Izdatel`stvo akademii nauk SSSR, 1962, 311 (in Russian)
28. Qian P.Li., Hansell Dennis A. Anal. Chim. Acta, 2008, 611, 68–72.
29. Paustovska A. S., Zinko L. S., Zaporozhets O. А., Nakonechna V. V., Pogrebnyak O. S. Methods and Objects of Chemical Analysis, 2015, 10(2), 53–60. (in Ukrainian).
30. Kalinichenko I.E. Igol`nikov V.E. Ukr. khim. zhurn., 1973, 39(6), 614–616. (in Russian).
31. Sjosten A., Blomqvist S. Water Res., 1997, 31(7), 1818–1823.
32. Altenau J.J., Pope M.T., Prados R.A., So S. Inorg. Chem., 1975, 14(2), 417–421
33. Vladimirov Yu. A., Proskurnina E. V. Uspekhi biologicheskoj khimii, 2009, 49, 341–388 (in Russian).
34. Totter J.R. Photochem. Photobiol., 1975, 22, 203–211.
35. Yatsimirskii K.B. Kinetic methods of analysis. Moscow, Khimiya, 1967. (in Russian).
36. Es'haghi Z. Anal. Chim. Acta, 2009, 641(1–2), 83–88.
37. State sanitary norms and rules 2.2.4-171-10 "Hygienic requirements for drinking water intended for human consumption". [from 2010-07-01], Kyiv, 2010, 25 p. (in Ukrainian).
38. State Standard of Ukraine DSTU 4808:2007. Sources of centralized drinking water supply. Hygienic and environmental requirements for water quality and selection rules. Derzhspozhyvstandart Ukrainy, Kyiv, 2007, 40 p. (in Ukrainian).
39. Pysareva N.Ie., Zui M.F., Pysarev Ye.O., Zaitsev V.M. Ukr. khim. zhurn., 2009, 75(1), 58–62. (in Ukrainian).
40. Dolenko S.O., Balamut V.I., Demchenko V.Ya., Bychkovs'ka O.M. Hidrolohiia, hidrokhimiia i hidroekolohiia, 2014, 4(35), 98-106. (in Ukrainian).
41. Frank C., Schroeder F., Ebinghaus R., Ruck W. Talanta, 2006, 70(3), 513–517.
42. Morais I.P.A., Miro M., Manera M. Anal. Chim. Acta, 2004, 506(1), 17–24.
43. State Standard of Ukraine DSTU ISO 6878:2008. Water quality. Determination of phosphorus. Spectrometric method using ammonium molybdate (ISO 6878: 2004, IDT). Derzhspozhyvstandart Ukrainy, Kyiv, 2011.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Г. Сумарокова, Р. Линник, О. Запорожець, Л. Зінько

This work is licensed under a Creative Commons Attribution 4.0 International License.
