COLLOID-CHEMICAL PATTERNS OF SORPTION OF PALLADIUM (II) ON PHYTOSORBENTS
UDC 544.723+543.3+546.9
Keywords:
electronic nose, probabilistic neural network, identification, cooked sausagesAbstract
The colloid-chemical patterns of sorption of palladium (II) on phytosorbents have been studied. It was found that the kinetics of sorption depends on the concentration of palladium (II) in the solution. When the concentration increases, the time of the establishment of the sorption equilibrium increases. Kinetic curves are best described by a pseudo-second order model throughout the range of concentrations studied.The correlation coefficient in the pseudo-first order equation at high concentrations of palladium (II) in the solution has a value close to 1.This feature may indicate that, at low concentrations, the chemical interaction between the metal ion and the functional group of sorbent prevails.At the same time, at high concentrations, internal diffusion also contributes.Thus we have two types of surface groups: "fast" – are on the surface of the sorbent and "slow" – located in the deep layers of the sorbent, access to which is complicated.To corroborate this assumption, the palladium (II) sorption isotherms were constructed on the surface of the phytosorbent at different times of the phase contact.With increasing time of phase contact increases sorption capacity.An increase in temperature leads to an increase in sorption capacity and a decrease in the time of the establishment of sorption equilibrium.This influence of temperature is probably due to the fact that the diffusion of metal ions is accelerated and in the chemisorption immediately, both "fast" and "slow" groups of sorbent are involved.The experimental isotherms of sorption are analyzed using the theoretical models of Langmuir and Freundlich adsorption.It was established that the isotherms of adsorption of palladium (II) on the surface of the phytosorbent are best described by the Langmuir model.The Freundlich model is not suitable for describing the palladium adsorption (II), since the experimental points do not lie straight, and the correlation coefficient has low values.It has been shown that phytosorbent exhibits a good kinetic property and has a high sorption capacity in relation to palladium (II).
References
1. Ковбаси варені, сосиски, сардельки, хліби м'ясні: ДСТУ 4436-2005. Чинний від 2006.07.01. К.: Держспоживстандарт України, 2006, 32 с.
Boiled sausages, frankfurters, sardellas, meat loaves: DSTU 4436-2005. 2006.07.01. Kyiv, Derzhspozhivstandart Ukraini, 2006, 32 p.
2. Russell T. A. Comparison of sensory properties of whey and soy protein concentrates and isolates: a thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Master of Science Department of Food Science. Raleig. 2004, 132 p.
3. Boatright W.L., Lei Q. J. Food Sci., 2000, 65, P. 819–821.
4. Шпичка А.И., Семенова Е.Ф. Фундаментальные исследования, 2013, 8, С. 1113–1124.
Shpichka A.I., Semenova Ye. F. Fundamental'nye issledovanija, 2013, 8, P. 1113–1124.
5. Мясо и мясные продукты. Метод гистологической идентификации состава: ГОСТ Р 51604-2000. Введён в действие 2000.05.12. М.: Госстандарт России, 2000,11 с.
Meat and meat products. Method of histological identification of composition: GOST R 51604-2000. 2000.05.12. Moscow, Gosstandart Rossii, 2000, 11 p.
6. Прошкин Л. В. Ветеринарно-санитарная экспертиза и методы определения качества и безопасности колбасных изделий. Автореф. дис. на соиск. уч. степени канд. вет. наук, СПб., 2011, 30 с.
Proshkin L. V. Veterinary and sanitary expertise and methods of quality and safety evaluation of the sausage products. Abstract of thesis for candidata's degree, SPb., 2011, 30 p.
7. Мясо и мясные продукты. Определение массовой доли растите-льного (соевого белка) методом электрофореза: ГОСТ Р 53220-2008. Введён в действие 2010.01.01. М.: Стандартинформ, 2009, 12 с.
Meat and meat products. Electrophoretic method of determination of soy proteins mass content: GOST R 53220-2008. 2010.01.01. Moscow, Standartinform, 2009, 12 p.
8. Demuth H., Beale M. Neural Network Toolbox User's Guide. The MathWorks Inc., 2002, 840 p.
9. Esbensen Kim H. Multivariate Data Analysis – in practice. An Introduction to Multivariate Data Analysis and Experimental Design, 5th Edition. Aalborg University, Esbjerg. Oslo: Camo Process AS, 2004, 54–65.
10. Tran D. H., NG A. W. M., Perera B. J. C., Burn S., Davis P. Urban Water J., 2006, 3 (3), 175–184.
11. Rios A., Barcelo D., Buydens L., Cardenas S., Heydorn K., Karlberg B., Klemm K., Lendl B., Milman B., Neidhart B., Stephany R. W., Townshend A., Zschunke A., Valcarcel M. Accredit. Qual. Assur., 2003, 8, 68–77.
12. Specht D. F. Neural Netw., 1990, 3, 109–118.
Downloads
Published
Issue
Section
License
Copyright (c) 2018 Р. Горда, мол. наук. співроб., О. Циганович, канд. хім. наук

This work is licensed under a Creative Commons Attribution 4.0 International License.
