INFLUENCE OF IN SITU INTRODUCTION OF THE HETEROPOLYNUCLEAR COMPLEXES CU3MN ON THE STRUCTURE AND PROPERTIES OF CROSS-LINKED POLYURETHANES
UDC:678.01:546.562:544.537:544.163:538.956
Keywords:
polyurethanes, heteropolynuclear complexes, order of heterogeneity, tensile strength, thermal stability, dielectric conductivityAbstract
In this paper the structure, thermal, mechanical, dielectric and relaxation properties of cross-linked polyurethane (CPU), modified with heteropolynuclear Cu3Mn complexes, were analyzed.
It was shown the amorphous structure of investigated CPUs with Bragg's orders which equal 0.44 nm. It was observed the increase of heterogeneity level and the formation of structures with relatively higher order of heterogeneity for modified systems. Bragg's orders were increased from 3.1 to 3.7 nm.
The immobilization of heteropolynuclear metals' complexes in polymer generally leads to decrease in the values of tensile strength and Young's modulus and to increase of elongation at break, compared with the corresponding values for the metal-free CPU.
There are four main stages the thermo oxidation degradation for the metal-containing CPUs. The modification in situ of CPUs with heteropolynuclear metal' complexes in some cases improves the thermal stability to 10°C.
Increasing temperature leads to an increase in the conductivity of the investigated systems.
The introduction of heteropolynuclear complexes Cu3Mn in polyurethane leads to increasing of macro chains mobility and, as a result, to increase of conductivity level. This effect realized due to complexes formation between functional groups in polyurethane and heteropolynuclear metal' compounds. The level of dielectric conductivity at the direct current of modified CPUs were increased to 1.5–2 orders, compared with the corresponding level for metal-free CPU.
References
1. Formation of Nanostructures in Multicomponent Systems Based on Organic Polymer and Coordination Metal Compound / Kozak N., Nizelskii Y., Mnikh N. et al. // Macromol. Symp. – 2006. – № 46. – P. 243–262.
2. Kozak N.V. Bottom-up nanostructured segmented polyurethanes with immobilized in situ transition and rare-earth metal chelate compounds – polymer topology – structure and properties relationship / Kozak N.V., Lobko Eu.V. // Polyurethane / InTech. – Croatia, 2012 . – P. 51–78.
3. Electrophysical properties of coordination compounds based on cobalt(II) and manganese(II) chlorides and ε-caprolactam / Davletbaeva I.M., Khairutdinov A.R., Bylinkin R.A. at all. // Russ. J. Appl. Chem. – 2001. – № 74. – P. 805–808.
4. Davletbaev R.S., Davletbaeva I.M., Gumerova I.O. The modification of polyurethanes by highly ordered coordination compounds of transition metals // Polyurethane / InTech. – Croatia, 2012. – С. 33–50.
5. Наноструктурування в поліуретанах з полімеріммобілізованими in sity комплексами металів / Нізельський, Ю.В. Скакун, Н.В. Козак та ін. // Полімерний журнал. – 2007. – № 3. – С. 445–464.
6. Штомпель В.И. Структура линейных полиуретанов / Штомпель В.И., Керча Ю.Ю. – К., 2007.
7. Наноструктурування в поліуретанах з полімеріммобілізованими in sity комплексами металів / Нізельський Ю.М., Козак Н.В., Штомпель В.І. та ін. // Наносистеми, наноматеріали, нанотехнології. – 2005. – № 2. – С. 445–464.
8. Скакун Ю.В. Структура і властивості поліетеруретанів, сформова-них у присутності моно- і полігетероядерних комплексів: Автореф. дис. … канд. хім. наук. – К., 2008.
9. Dielectric conductivity of cross-linked polyurethanes, modified with heteropolynuclear Cu3Mn complexes / Gagolkina Z.O., Lobko Eu.V., Fomenko A.O. et al. // Kyiv–Toulouse: Proceedings of the VII International scientific conference., Kiev, 2013. – К.: 2014. – P. 96–101.
10. Козак Н.В. Фізико-механічні властивості сітчастих та лінійних полі-уретанів, модифікованих координаційними сполуками металів / Козак Н.В., Лобко Є.В., Клепко В.В. // ВХиХТ. – 2012. – № 1. – С. 46–51.
11. Липатов Ю.С., Шилов В.В., Гомза Ю.П., Кругляк Н.Е. Рентгеног-рафические методы изучения полимерных систем. – К., Наукова думка, 1982. – 296 c.
12. Vonk C.G. FFSAXSs Program for the the Processing of Small-Angle X-ray Scattering Data. – Geleen, 1974.
13. ГОСТ 14236-81 Пленки полимерные. Метод испытания на ра-стяжение. – М., 1981.
14. Блайт Э.Р., Блур Д. Электрические свойства полимеров. – М.: Физматлит, 2008.
15. Baker R.E. Mobility and Conductivity of Ions in and into Polymeric Solids // Pure Appl. Chem. – 1976. – № 46. – P. 157–170.
Downloads
Published
Issue
Section
License
Copyright (c) 2014 З. Гаголкіна, мол. наук. співроб., Е. Лобко, мол. наук. співроб., Н. Козак, канд. хім. наук, Ю. Гомза, канд. хім. наук, В. Клепко, д-р фіз.-мат. наук, В. Кокозей, д-р хім. наук, С. Петрусенко, канд. хім. наук, О. Стецюк, студ.

This work is licensed under a Creative Commons Attribution 4.0 International License.
