OPTICAL AND PHOTOCHEMICAL PROPERTIES OFPOLYMERS BASED ON 2-(4-METHACRYOXYSTYRYL)QUINOLINE

DOI: https://doi.org/10.17721/1728-2209.2020.1(57).15

Authors

Keywords:

Styrylquinoline, photoisomerization, photoluminescence, radical polymerization

Abstract

The design and synthesis of new polymer materials with controlled and predictable properties is still a challenge. Photoactive chromophore can be incorporated into a polymer in several different ways: guest-host systems, main chain polymers and side chain polymers. While none of these options are not perfect and each has its advantages and disadvantages. However, the chromophore functionalized polymers were found to be more effective due to: high concentration of the chromophores can be introduced; polymers with chromophore moiety show increased stability of poling induced SHG activity and decrease of the orientation relaxation process; absence of phase separation lessens the scattering losses; such techniques as plasma etching, optically induced index changes, laser ablation, electrical poling can be applied; multilayer phormation assists in easy integration with electronic and optical components. The principles of design of various molecular photoswitches and logical devices, in particular, those based on the photoisomerization reaction of diarylethylenes have been actively investigated in recent years. Azasubstituted diarylethylenes (DAE) styrylquinolines containing a central double bond and an endocyclic nitrogen atom, have become the subject of interest due to their ability to reversible transformations (photoisomerization and protonation). In this work, photosensitive polymers were synthesized by radical polymerization of corresponding styrylquinoline derivatives with comonomers methyl methacrylate (MMA) using asobisisobutyronitrile (AIBN) as radical initiator. We present results obtained for thin films of the methacrylic polymers incorporating styrylquinoline side-group as optically active molecule. Synthesis of 2-(4-methacryloxystyryl)quinolone and 2-(4-methacryloxystyryl)-6-methoxyquinoline was described. The polymers were obtained by free radical polymerization of methacrylic monomers in dimethylformamide with azobisisobutyronitrile as initiator. The products of polymerization were characterized and evaluated by 1HNMR, UV spectroscopy. Glass transition temperatures were characterized by DSC method. It was found 133°C, 110°C, 130°C, 112°C for P1, P1MMA, P2, P2MMA respectively. Their optical and photochemical properties as well as temperature dependence of the photoluminescence of diarylethylenes have been investigated.

References

1. Irie M. Photochromism: memories and switches – introduction / M. Irie //Chem. Rev. – 2000. – Vol. 100, № 5. – P. 1683–1684.

2. The generic enhancement of photochromic dye switching speeds in a rigid polymer matrix / R. A. Evans, T. L. Hanley, M. A. Skidmore, T. P. Davis, G.K. Such, L.H. Yee, G.E. Ball, D.A. Lewis // Nature Mater. – 2005. – Vol. 4. – № 3. – P. 249–253.

3. Sekkat Z. Photoreactive organic thin films / Z. Sekkat, W. Knoll. – San

Diego : Academic Press, 2002.

4. Inorganic-organic hybrid photochromic materials / M. Wang, G. Xu,

Z. Zhang, G. Guo // Chem. Commun. – 2010. – Vol. 46. – P. 361–376.

5. Third-order nonlinear optical response of push-pull azobenzene

polymers / I. Papagiannouli, K. Iliopoulos, D. Gindre, B. Sahraoui, O. Krupka, V. Smokal, A. Kolendo, S. Couris // Chem. Phys. Lett. – 2012. – Vol. 554. –P. 107–112.

6. Data and signal processing using photochromic molecules / D. Gust,

J. Andréasson, U., Pischel, T. A. Moore, A. L. Moore // Chem. Commun. –2012. – Vol. 48. – № 14. – P. 1947–1957.

7. Coumarins in polymers: from light harvesting to photo-cross-linkable tissue scaffolds / S. R. Trenor, A. R. Shultz, B. J. Love, T. E. Long // Chem. Rev. – 2004. – Vol. 104. – № 6. – P. 3059–3078.

8. Gindre D. Image storage in coumarin-based copolymer thin films by

photoinduced dimerization / D. Gindre, K. Iliopoulos, O. Krupka,

E. Champigny, Y. Morille, M. Sallé // Opt. Lett. – 2013. – Vol. 38. – № 22. P. 4636–4639.

9. Grating inscription in picosecond regime in thin films of functionalized DNA / R. Czaplicki, O. Krupka, Z. Essaidi, A. El-Ghayoury, F. Kajzar, J.G. Grote, B. Sahraoui // Opt. Express. – 2007. – Vol. 15. – P. 15268–15273.

10. Nonlinear optical response of photochromic azobenzenefunctionalized self-assembled monolayers / M. Schulze, M. Utecht, T. Moldt, D. Przyrembel, C. Gahl, M. Weinelt, P. Saalfrank, P. Tegeder // Phys. Chem. Chem. Phys. – 2015. – Vol. 17. – P. 18079–18086.

11. Dürr H. Photochromism: Molecules and Systems / H. Dürr, H. Bouas-Laurent. – Amsterdam: Elsevier, 2003.

12. Klajn R. Spiropyran-based dynamic materials / R. Klajn // Chem. Soc. Rev. – 2014. – Vol. 43. – P. 148–184.

13. Synthesis and study of nonlinear optical properties of oxazalone

containing polymers / V. Smokal, R. Czaplicki, B. Derkowska, O. Krupka,

A. Kolendo, B. Sahraoui // Synth. Met. – 2007. – Vol. 157. – P. 708–712.

14. Eaton D. Nonlinear optical materials / D. Eaton // Science. – 1991. –

Vol. 253. – P. 281–287.

15. Zhang X. Coopling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials / X. Zhang, H. Lili, S. Paolo // Nat. Commun. – 2016. – Vol. 7. – P. 1–14.

16. Photorespponsive fluorescent reduced grapheme oxide by spiropyran conjugated hyaluronic acid for in vivo imaging and target delivery / A.A. Nahain, J.E. Lee, J.H. Jeong, S.Y. Park // Biomacromolecules. – 2013. – Vol. 14. –№ 11. – P. 4082–4090.

17. Manouras T. Field responsive materials: photo-, electro-, magnetic and ultrasound-sensitive polymers / T. Manouras, M. Vamvakaki // Polym.Chem. – 2017. – Vol. 8. – P. 74–96.

18. Light-controlled conductance switching in azobenzene containing

MWCNT-polymer nanocomposites / S. W. Basuki, V. Schneider, T. Strunskus,M. Elbahri, F. Faupel // ACS Appl. Mater. Interfaces. – 2015. – Vol. 7. – P. 11257–11262.

19. Photosensitive materials and potential of photocurrent mediated tissue regeneration / G. Jin, M.P. Prabhakaran, S. Liao, S. J. Ramakrishna // Photochem. Photobiol. B. – 2011. – Vol. 102. – № 2. – P. 93–101.

20. Synthesis and photoisomerization of dithienyethene-bridged

diporphyrins / A. Osuka, D. Fujikane, H. Shinmor, S. Kobatake, M. Irie //

J. Org. Chem. – 2001. – Vol. 66. – № 11. – P. 3913–3923.

21. Budyka M. F. Photonics of styryquinoline dyads / M.F. Budyka // Org. Photonics Photovolt. – 2014. – Vol. 3. – P. 101–131.

22. Optical properties of polymethacrylate with styrylquinoline side chains / B. Derkowska-Zielinska, V. Figà, O. Krupka, V. Smokal // Proc. SPIE. – 2015. – Vol. 9652. – P. 965216.

23. Optical properties of coumarins containing copolymers / L. Skowronski, O. Krupka, V. Smokal, A. Grabowski, M. Naparty, B. Derkowska-Zielinska // Opt. Mater. – 2015. – Vol. 47. – P. 18–23.

24. Photoisomerization of 2-styrylquinoline in neutral and protonated forms / M. Budyka, N. Potashova, T. Gavrishova, V.M Li // High Energy Chem. – 2008. – Vol. 42. – P. 446–453.

25. Saltiel J. Cis-trans isomerization of olefins / J. Saltiel, J. L. Charlton //

Rearrangement in Ground and Excited States. Organic Chemistry: A Series of Monographs / Ed. by P. de Mayo. – Academic Press., 1980. – Vol. 42. – P. 25–89.

26. Alfimov M. Photoswitchable molecular receptors / M. Alfimov,

O. Fedorova, S.J. Gromov // Photochem. Photobiol. A. – 2003. – Vol. 158. – P. 183–198.

27. Azinylarylethenes: synthesis and photophysical and photochemical

properties / G. N. Lipunova, E. V. Nosova, T. V. Trashakhova, V. N. Charushin // Russ. Chem. Rev. – 2011. – Vol. 80. – P. 1115–1133

Published

2020-12-14

How to Cite

OPTICAL AND PHOTOCHEMICAL PROPERTIES OFPOLYMERS BASED ON 2-(4-METHACRYOXYSTYRYL)QUINOLINE: DOI: https://doi.org/10.17721/1728-2209.2020.1(57).15. (2020). Bulletin of the Taras Shevchenko National University of Kyiv. Chemistry, 57(1), 61-66. https://chemistry.bulletin.knu.ua/article/view/8384

Most read articles by the same author(s)