SYNTHESIS AND SPECTRAL INVESTIGATIONS OF ANIONIC NaLnL4 AND NEUTRAL MIXED-LIGAND (LnL3phen, LnL3bipy) LANTHANIDE (III) COMPLEXES BASED ON O,O′-DIMETHYL-N-(3-NITROBENZOYL)AMIDOPHOSPHATE
DOI: https://doi.org/10.17721/1728-2209.2025.1(60).6
Keywords:
carbacylamidophosphate, lanthanides, tetrakis complexes, mixed-ligand complexes, spectroscopyAbstract
Background. Lanthanide complexes Ln3+ play an important role in the development of advanced technologies due to their unique photophysical properties, which leads to a constant expansion of their application, from being part of functional metal-organic frameworks (MOFs) for sensor technology and catalysis and components of hybrid materials for optoelectronics to highly sensitive luminescent thermometers that allow temperature measurement in the micro- and nanoscale ranges. The implementation of such properties requires the use of lanthanide complexes Ln3+ with highly efficient “antenna” ligands. Among the promising phosphors, lanthanide complexes Ln3+ based on carbacylamidophosphates (CAPH ligands) can be distinguished, since the presence of P=O and C=O donor groups in their structure provides high affinity to Ln³⁺ ions with the possibility of chelate coordination through oxygen atoms to form stable six-membered metal cycles.
The aim of this work was to investigate the possibility of forming mono- and hetero-ligand complexes of lanthanides with O,O′-dimethyl-N-(3-nitrobenzoyl)amidophosphate, as well as to study and compare their properties.
Methods. The complexes were synthesized using standard methods based on the exchange reaction between lanthanide nitrate and sodium salts of the ligand in non-aqueous solutions. Methods of infrared, electronic, 1H, and 31P NMR spectroscopies were used to investigate the composition and structure of the synthesized complexes.
Results. On the basis of results of the investigation by IR spectroscopy, it was established that the CAPh ligand coordinates to the lanthanide ion in a deprotonated state bidentate-chelate via the oxygen atoms of the carbonyl and phosphoryl groups. Based on the date of 1H NMR spectroscopy of lanthanum complexes, the inclusion of the CAPh ligand in the coordination sphere in a deprotonated state was confirmed, and it was also proved that the ratio of CAPh and additional ligands in neutral complexes corresponds to the proposed (3:1). Analysis of the electronic spectra of Nd3+ complexes in the 4I9/2→4G5/2, 2G7/2 transition region confirms the realization of the coordination number of the central ion 8.
Сonclusions. The new coordination compounds of lanthanides (III) with the following chemical formulas: Na[LnL4], LnL3phen, LnL3bipy, where Ln = La, Nd, Eu, Tb, Er; HL – O,O -dimethyl-N-(3-nitrobenzoyl)amidophosphate; phen – 1,10-phenanthroline; bipy – α,α'-bipyridine were successfully synthesized. The conclusions about bidentate coordination of ligands to the central atom with the realization of the central ion's coordination number 8 were made based on IR, electronic, 31P NMR, and 1H NMR spectroscopy.
References
Binnemans, K. (2005). Rare-earth beta-diketonates. In K. A. Gschneidner, Jr., J.-C. G. Bünzli, & V. K. Pecharsky (Eds.), Handbook on the Physics and Chemistry of Rare Earths (pp. 35, 107–272). Elsevier. https://doi.org/10.1016/S0168-1273(05)35003-3
Bünzli, J.-C. G. (2015). On the design of highly luminescent lanthanide complexes. Coordination Chemistry Reviews, 293-294, 19–47. https://doi.org/10.1016/j.ccr.2014.10.013
Bünzli, J.-C. G., & Choppin, G. R. (Eds.). (1989). Lanthanide probes in life, chemical and earth sciences: Theory and practice. Elsevier Science.
Carlotto, A., Babetto, L., Carlotto, S., Miozzi, M., Seraglia, R., Casarin, M., Bottaro, G., Rancan, M., Armelao, L. (2020). Luminescent thermometers: from a library of Eu(III)‐β‐diketonates to a general model for predicting the thermometric behaviour of europium‐based coordination systems. ChemPhotoChem, 4(11), 518-531. https://doi.org/10.1002/cptc.202000116
Chen, Q., Zhang, J., Ye, Q., Qin, S., Li, L., Teng, M., & Wong, W.-Y. (2025). Progress in Luminescent Materials Based on Europium(III) Complexes of β-Diketones and Organic Carboxylic Acids. Molecules, 30(6), 1342. https://doi.org/10.3390/molecules30061342
Costa, I. F., Blois, L., Paolini, T. B., Assuncão, I. P., Teotonio, E. E. S., Felinto, M. C. F. C., Moura Jr., R. T., Longo, R. L., Faustino, W. M., Carlos, L. D., Malta, O. L., Carneiro Neto, A. N., & Brito, H. F. (2024). Luminescence properties of lanthanide tetrakis complexes as molecular light emitters. Coordination Chemistry Reviews, 502. https://doi.org/10.1016/j.ccr.2023.215590
Hamon, N., Roux, A., Beyler, M., Mulatier, J.-C., Andraud, C., Nguyen, C., Maynadier, M., Bettache, N., Duperray, A., Grichine, A., Brasselet, S., Gary-Bobo, M., Maury, O., & Tripier, R. (2020). Pyclen-based Ln(III) complexes as highly luminescent bioprobes for in vitro and in vivo one- and two-photon bioimaging applications. Journal of the American Chemical Society, 142(23), 10184-10197. https://doi.org/10.1021/jacs.0c03496
Hasegawa, M., Ohmagari, H., Tanaka, H., & Machida, K. (2022). Luminescence of lanthanide complexes: From fundamental to prospective approaches related to water- and molecular-stimuli. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 50, Article 100484. https://doi.org/10.1016/j.jphotochemrev.2022.100484
Horniichuk O.Y., Klimov I.S., Trush V.O., Kariaka N.S., Domasevitch K.V., Dyakonenko V.V., Shishkina S.V., Smola S.S., Rusakova N.V., Amirkhanov V.M. (2023). Synthesis and characterization of the new carbacylamidophosphate based rare earth tetrakis-complexes NEt4[LnL4]. Effect of the ligand nitro group on luminescence of Eu3+ and Tb3+. Journal of Molecular Structure, 1265, Article 134882. https://doi.org/10.1016/j.molstruc.2022.134882
Horniichuk, O. Y., Kariaka, N. S., Smola, S. S., Rusakova, N. V., Trush, V. O., Sliva, T. Y., & Amirkhanov, V. M. (2021). Efficient sensitized luminescence of binuclear Ln(III) complexes based on a chelating bis-carbacylamidophosphate. Journal of Fluorescence, 31(4), 1029–1039. https://doi.org/10.1007/s10895-021-02733-0
Kariaka, N. S., & Amirkhanov, V. M. (2025). IR spectral criteria for the coordination of carbacylamidophosphates: Methodical guidelines [ІЧ спектральні критерії координації карбациламідофосфатів: методичні вказівки]. Taras Shevchenko National University of Kyiv. https://inorgchem.knu.ua/ua/images/stories/INORGCHEM/Literatura/ftir_spectra_caf_2025.pdf
Kariaka, N. S., Smola, S. S., Halushchenko, V. S., Rusakova, N. V., Sliva, T. Y., & Amirkhanov, V. M. (2023). Dual near infrared and visible highly luminescent samarium complexes based on dimethyl-N-benzoylamidophosphate. Chemical Papers, 77(10), 5989–5997. https://doi.org/10.1007/s11696-023-02915-z
Kariaka, N. S., Trush, V. A., Gawryszewska, P., Dyakonenko, V. V., Shishkina, S. V., Sliva, T. Y., & Amirkhanov, V. M. (2016). Spectroscopy and structure of [LnL3bipy] and [LnL3phen] complexes with CAPh type ligand dimethylbenzoylamidophosphate. Journal of Luminescence, 178, 392–399. https://doi.org/10.1016/j.jlumin.2016.06.018
Kariaka, N. S., Trush, V. A., Medviediev, V. V., Dyakonenko, V. V., Shishkin, O. V., Smola, S. S., Fadeyev, E. M., Rusakova, N. V., & Amirkhanov, V. M. . (2015). Coordination compounds based on CAPh type ligand: Synthesis, structural characteristics and luminescence properties of tetrakis-complexes CsLnL₄ with dimethylbenzoylamidophosphate. Journal of Coordination Chemistry, 69(1), 123–134. https://doi.org/10.1080/00958972.2015.1115024
Kariaka, N., Panasiuk, D., Trush, V., Smola, S., Rusakova, N., Dyakonenko, V., Shishkina, S., Lipa, A., Bienko, A., Nasalska, J., Gawryszewska, P., & Amirkhanov, V. (2025). Dual visible and NIR emission, mechanoluminescence, and magnetic properties of PPh₄[LnL₄] chelates with diphenyl-N-benzoylamidophosphate. Molecules, 30(6), Article 1245. https://doi.org/10.3390/molecules30061245
Karraker, D. G. (1971). Spectral studies on the Nd³⁺ and Er³⁺ chelates of heptafluorodimethyloctanedione. Journal of Inorganic and Nuclear Chemistry, 33(11), 3713–3718. https://doi.org/10.1016/0022-1902(71)80278-6
Kostova, I. (2005). Lanthanides as anticancer agents. Curr Med Chem Anticancer Agents, 5(6), 591-602. https://doi.org/10.2174/156801105774574694
Li, D., Yadav, A., Zhou, H., Roy, K., Thanasekaran, P., & Lee, C. (2024). Advances and applications of metal‐organic frameworks (MOFs) in emerging technologies: a comprehensive review. Global Challenges, 8(2), 2300244. https://doi.org/10.1002/gch2.202300244
Li, P., & Li, H. (2021). Recent progress in the lanthanide-complexes based luminescent hybrid materials. Coordination Chemistry Reviews, 441, Article 213988. https://doi.org/10.1016/j.ccr.2021.213988
Michnik, Ł., Carneiro Neto, A. N., Trush, V. A., Korabik, M., Malta, O. L., Amirkhanov, V. M., & Gawryszewska, P. (2024). The effect of the outer-sphere cations on the photophysical and magnetic properties of rare earth complexes with 2,2,2-trichloro-N-(diphenylphosphoryl)acetamide. Optical Materials: X, 23, Article 100332. https://doi.org/10.1016/j.omx.2024.100332
Pham, Y. H., Trush, V. A., Carneiro Neto, A. N., Korabik, M., Sokolnicki, J., Weselski, M., Malta, O. L., Amirkhanov, V. M., & Gawryszewska, P. (2020). Lanthanide complexes with N-phosphorylated carboxamide as UV converters with excellent emission quantum yield and single-ion magnet behavior. Journal of Materials Chemistry C, 8(29), 9993–10009. https://doi.org/10.1039/D0TC01445A
Puntus, L. N., Lyssenko, K. A., Pekareva, I. S., & Bünzli, J.-C. G. . (2009). Intermolecular interactions as actors in energy-transfer processes in lanthanide complexes with 2,2′-bipyridine. The Journal of Physical Chemistry B, 113(27), 9265–9277. https://doi.org/10.1021/jp902390z
Saleem H, Iqbal U. (2018). The Fight Against Cancer: Nitrobenzaldehyde as the Potential Warrior. Cureus , 10(2). https://doi.org/10.7759/cureus.2163
Savchuk, M. O., Litsis, O. O., Kariaka, N. S., Trush, V. O., Dyakonenko, V. V., Smola, S. S., Rusanova, J. A., Sliva, T. Y., Shishkina, S. V., & Amirkhanov, V. M. (2024). Polymeric sodium salts and monomeric lanthanide coordination compounds with diphenyl-N-trichloroacetylamidophosphate: Synthesis and characterization. Inorganica Chimica Acta, 559, 121783. https://doi.org/10.1016/j.ica.2023.121783
Tessitore, G. M. (2023). The role of lanthanide luminescence in advancing technology. RSC Advances, 13(26), 17887–17911. https://doi.org/10.1039/D3RA00991B
Trejgis, K., Ledwa, K., Bednarkiewicz, A., & Marciniak, L. (2022). A single-band ratiometric luminescent thermometer based on tetrafluorides operating entirely in the infrared region. Nanoscale Advances, 4, 437-446. https://doi.org/10.1039/D1NA00727K
Tubau, À., Rodríguez, L., Pander, P., Weatherill, L., Dias, F. B., Font-Bardía, M., & Vicente, R. . (2024). Slow magnetic relaxation and luminescence properties in β-diketonate lanthanide(iii) complexes. Preparation of Eu(iii) and Yb(iii) OLED devices. Journal of Materials Chemistry C, 12(22), 8127–8144. https://doi.org/10.1039/D4TC00902A
Ye, H., Dong, X., Xu, M., Cheng, X., Dai, J., & Zhang, J. (2020). Research Progress of Europium Complexes Luminescent Materials. Materials Science Forum, 1001, 1–15. https://doi.org/10.4028/www.scientific.net/msf.1001.1
Zyss, J., Ledoux, I., Volkov, S., Chernyak, V., Mukamel, S., Bartholomew, G. P., & Bazan, G. C. (2000). Through-Space Charge Transfer and Nonlinear Optical Properties of Substituted Paracyclophane. Journal of the American Chemical Society, 122(48), 11956–11962. https://doi.org/10.1021/ja0022526
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Євгеній БОРИСЕНКО, Олександр ГОРНІЙЧУК, Вікток ТРУШ, Наталія КАРЯКА, Володимир АМІРХАНОВ

This work is licensed under a Creative Commons Attribution 4.0 International License.
