QUANTITATIVE SCALES OF STRUCTURAL RIGIDITY AND CONFORMATIONAL RESTRICTION OF SEGMENTS AND MOLECULES AS A WHOLE BASED ON CALCULATED ENTHALPIES OF CONFORMER FORMATION: CONSTRUCTION ALGORITHM AND TYPICAL EXAMPLES
DOI: https://doi.org/10.17721/1728-2209.2024.1(59).2
Keywords:
structural rigidity, structural flexibility, conformational restriction, conformational accessibility, scales, moleculesAbstract
Background. In chemical and biological research, there is often a need for a more accurate description of individual properties of molecular objects, in particular, a comparison of their spatial and mechanical characteristics. However, scales for the quantitative description of the parameters mentioned in the title still do not exist.
Methods. Quantum-chemical calculation (АМ1) of enthalpies E of formation of conformers of molecules.
Results. Based on the calculated enthalpy differences ΔE, an improved algorithm was proposed and combined logarithmic scales of structural rigidity – flexibility and conformational restriction – accessibility of molecules were created. Examples of calculations for characteristic structures and their results for chain, cyclic and skeleton molecules are given. The developed algorithm demonstrates the physical nature of the mentioned parameters, exponentially related to energy and entropy. It also demonstrates connection and differences between the spatial and force characteristics of molecules. The relationship of conformational accessibility, directly related to space, with the symmetry of the molecule, and structural rigidity, related to the ability of the molecule to undergo mechanical deformations, is quantitatively related. In addition, the proposed algorithm allows to calculate the numerical indices of structural flexibility and conformational accessibility as the inverse of the values of the parameters of structural stiffness and conformational restriction. This approach greatly simplifies the perception of all four scales, because in the logarithmic dimension they are placed in pairs on one coordinate axis symmetrically to its origin.
Conclusions. The proposed algorithm makes it possible to quantitatively compare the above-mentioned calculated parameters of selected molecules as a whole and their individual segments, and, if necessary, molecular complexes.
References
Bhattarai, A., & Emerson, I. A. (2020). Dynamic conformational flexibility and molecular interactions of intrinsically disordered proteins. J. Biosci., 45, 29. https://doi.org/10.1007/s12038-020-0010-4
Chen, X., Bayard, F., Gonzalez-Sanchis, N., Pamungkas, K.K.P., Sakai, N., & Matile, S. (2023). Fluorescent Flippers: Small-Molecule Probes to Image Membrane Tension in Living Systems. Angew. Chem. Int. Ed., 62, e202217868. https://doi.org/10.1002/anie.202217868
Clark, D., Willet, P., & Kenny, P. (1993). Pharmacophoric pattern matching in files of three-dimensional chemical structures: Implementation of flexible searching// J. Mol. Graphics 11, 146–156. https://doi.org/10.1021/ci00017a026
de Sena, M. Pinheiro, P., Rodrigues, D. A., do Couto Maia, R, Thota, S., & Fraga, C. A. M. (2019). The Use of Conformational Restriction in Medicinal Chemistry. Curr. Top. Med. Chem., 19(19), 1712–1733. https://doi.org/10.2174/1568026619666190712205025
Fang, Z., Song, Y., Zhan, P., Zhang, Q., & Liu, X. (2014). Conformational restriction: an effective tactic in 'follow-on'-based drug discovery. Future Med. Chem., 6(8), 885-901. https://doi.org/10.4155/fmc.14.50
Feller, S. E., Gawrisch, K., & MacKerell, A. D. (2002). Polyunsaturated Fatty Acids in Lipid Bilayers: Intrinsic and Environmental Contributions to Their Unique Physical Properties. J. Am. Chem. Soc., 124, 318–326. https://doi.org/10.1021/ja0118340
Fisanick, W., Cross, K., & Rusinko, A. (1992). Similarity Searching on CAS Registry Substances. 1. Global Molecular Property and Generic Atom Triangle Geometric Searching. J. Chem. Inf. Comput. Sci., 32, 664–674. https://doi.org/10.1021/ci00010a013
Grygorenko, O. O., Radchenko, D. S., Volochnyuk, D. M., Tolmachev, A. A., & Komarov, I. V. (2011). Bicyclic conformationally restricted diamines. Chem. Rev., 111(9), 5506–68. https://doi.org/10.1021/cr100352k3.
Jacobsen, E. N. (Ed.). (1999). Comprehensive Asymmetric Catalysis. Heidelberg, Springer. https://link.springer.com/book/9783540005544
Karpenko, Y. A., & Pivovarenko, V. G. (2012). Numerical indices of structural flexibility – rigidity and conformational accessibility – limitation of organic molecules. J. Org. Pharm. Chem., 10, 60–65.
Kier, L. B. (1985). Shape Index from Molecular Graphs. Quant. Struct.-Act. Relat., 4, 109–116. https://doi.org/10.1002/qsar.19850040303
Kier, L. B. (1986). Shape Indexes of Orders One and Three from Molecular Graphs. Quant. Struct.-Act. Relat., 5, 1–7. https://doi.org/10.1002/qsar.19860050102
Kier, L. B. (1989). An Index of Molecular Flexibility from Kappa Shape Attributes. Quant. Struct.-Act. Relat. 8, 218–221. https://doi.org/10.1002/qsar.19890080307
Kier, L. B., & Hall, L. H. (2006) Structural Information and a Flexibility Index from the Molecular Connectivity 3χp Index. Quant. Struct.-Act. Relat., 2, 55–59. https://doi.org/10.1002/qsar.19830020202
Koĉa, J. (1993). Potential energy hypersurface and molecular flexibility. J. Mol. Struct., 291, 255–269. https://doi.org/10.1016/0022-2860(93)85049-Z
Koĉa, J. (1998). Travelling through conformational space: an approach for analyzing the conformational behaviour of flexible molecules. Progr. Biophys. Molec. Biol., 70, 137–173. https://doi.org/10.1016/s0079-6107(98)00029-7
Kulshrestha, A., Maurya, S., Gupta, T., Roy, R., Punnathanam, S. N., & Ayappa, K. G. (2023). Conformational Flexibility Is a Key Determinant for the Lytic Activity of the Pore-Forming Protein, Cytolysin A. J. Phys. Chem. B, 127(1), 69–84. https://doi.org/10.1021/acs.jpcb.2c05785
Law, N. A., Dietzsch, W., & Duffy, N. V. (2003). A multinuclear (1H, 13C, 15N) NMR study of cis-halonitrosylbis(dithiocarbamato)iron(II) complexes: effect of replacement of S by Se. Polyhedron, 22, 3423–3432.
Luisi, P. (1977). Molecular Conformational Rigidity: An Approach to Quantification. Naturwissenschaften, 64, 569–574. https://doi.org/10.1007/BF00450635
Mikhailiuk, P. K., Afonin, S., Chernega, A. N., Rusanov, E. B., Platonov, M. O., Dubinina, G. G., Berditsch, M., Ulrich, A. S., & Komarov, I. V. (2006). Conformationally rigid trifluoromethyl-substituted α-amino acid designed for peptide structure analysis by solid state 19F-NMR// Angew. Chem. Int. Ed., 45, 5659-5661. https://doi.org/10.1002/anie.200600346
Mizutani, T., Ema, T., & Ogoshi, H. (1995). Restricted Internal Rotation of Amino Acid Esters. Quantitative Evaluation of Rigidity of a Molecule in terms of Internal Rotational Entropy. Tetrahedron, 51, 473–484. https://doi.org/10.1016/0040-4020(94)00909-E
Peng, C., Zhu, Z., Shi, Y., Wang, X., Mu, K., Yang, Y., Zhang, X., Xu, Z., & Zhu, W. (2020). Computational Insights into the Conformational Accessibility and Binding Strength of SARS-CoV-2 Spike Protein to Human Angiotensin-Converting Enzyme. J. Phys. Chem. Lett., 11, 10482–10488.
Jaenicke, R. (2020). Computational Insights into the Conformational Accessibility and Binding Strength of SARS-CoV-2 Spike Protein to Human Angiotensin-Converting Enzyme 2. J. Phys. Chem. Lett., 11(24), 10482–10488. https://doi.org/10.1021/acs.jpclett.0c02958
Pivovarenko, V. G., & Karpenko, Y. A. (2011). A Method of Quantitative characterization of structural flexibility – rigidity and conformational accessibility – limitation of organic molecules. J. Org. Pharm. Chem., 9, 78–83.
Stahl, M., & Schopfer, U. (1997). Understanding conformer equilibria in solution with the aid of calculated 13C NMR spectra. A density functional and molecular mechanics study. J. Chem. Soc., Perkin Trans., 2, 905–908.
Stewart, J. J. P. MOPAC2007. Stewart Computational Chemistry, Colorado Springs. http://OpenMOPAC.net
Tanaka, A., & Nishizaki, T. (2003). The Newly Synthesized Linoleic Acid Derivative FR236924 Induces a Long-Lasting Facilitation of Hippocampal Neurotransmission by Targeting Nicotinic Acetylcholine Receptors. Bioorg. Med. Chem. Lett., 13, 1037–1040. https://doi.org/10.1016/s0960-894x(03)00089-1
Tsvetkov, V. N., Andreeva, L. N., Bushin, S. V., Mashoshin, A. I., Cherkasov, V. A., Edlinski, Z., & Sek, D. (1984). Conformational properties of aromatic polyesters of terephthalic acid. Eur. Polym. J., 20, 371–376. https://doi.org/10.1016/0014-3057(84)90062-4
Von der Lieth, C.-W., Stumpf-Nothof, K., & Prior, U. (1996). A Bond Flexibility Index Derived from the Constitution of Molecules. J. Chem. Inf. Comput. Sci., 36, 711–716. https://doi.org/10.1021/ci9501204
Vologodskii, A. V., Levene, S. D., Klenin, K. V., Frank-Kamenetskii, M., & Cozzarelli, N. R. (1992). Conformational and thermodynamic properties of supercoiled DNA. J. Mol. Biol., 227, 1224–1243. https://doi.org/10.1146/annurev.bb.23.060194.003141
Yamamoto, Y., Yokoyama, S., Miyazawa, T., Watanabe, K., & Higuchi, T. S. (1983). NMR analyses on the molecular mechanism of the conformational rigidity of 2-thioribothymidine, a modified nucleoside in extreme thermophile tRNAs. FEBS Lett., 157, 95–99.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Vasyl PIVOVARENKO

This work is licensed under a Creative Commons Attribution 4.0 International License.
