INDICATOR SYSTEM "ZR(IV)-ARSENAZO I" FOR ORTHOPHOSPHATE DETERMINATION IN FRESH AND BRAKISH WATERS

UDC 543.34; 543.062; 543.42.062

Authors

  • G. Sumarokova, PhD student Taras Shevchenko National University of Kyiv image/svg+xml
  • O. Zaporozhets, DSc (Chemistry) Taras Shevchenko National University of Kyiv image/svg+xml
  • L. Zinko, Cand. Sci. (Chem.) Taras Shevchenko National University of Kyiv image/svg+xml
  • A. Paustovska, Engineer (Category I) Taras Shevchenko National University of Kyiv image/svg+xml
  • K. Polischuk, PhD student Taras Shevchenko National University of Kyiv image/svg+xml
  • Yu. Prokapalo, Student Taras Shevchenko National University of Kyiv image/svg+xml

Keywords:

orthophosphate, arsenazo І, Zirconium, marine water

Abstract

An indirect spectrophotometric method for the determination of orthophosphate in brakish waters is proposed. The method is based on the discoloration of a Zr(IV) with arsenazo I complex in the presence of a detectable anion. The Zr(IV) and arsenazo I complex is chosen due to its satisfactory spectroscopic characteristics. Previously the system was used for the determination of fluoride in care products for the oral cavity and bioactive supplements [30]. The present results proclaimed that the order of reagents' mixing had a decisive effect on the analytical response. However, in the case when Zr(IV) solution occured in excess, the mixing order was not of a great importance. Conversely, adding arsenazo I solution in excess demanded the adherence of the mixing order. Latter provided the largest difference between the analytical response obtained in the absence and in the presence of phosphate for the preposed system. Accordingly, the most efficient interaction was observed after the binding of phosphate with Zr(IV) solution, followed by the reaction of residual Zr(IV) amounts with arsenazo I. It was shown that the analytical responce could be detected either at the complex' absorption maximum (575 nm) or at the reagent's absorption maximum (500 nm). However, wider linear ranges and lower detection limits were obtained for the signal detection at the complex' absorption maximum. Among the electrolytes that form a marine water inorganic matrix the greatest impact had sulphates and fluorides on the developed system. Sulfates were removed by the precipitation with barium chloride in highly acidic medium. Fluorides were eliminated by adding the equimolar quantity of Zr(IV) solution. Under optimal conditions the linearity range was 0.24-1.0 mg PO43–/L, the detection limit was 0.07 mg PO43–/L for the sample volume of 10.0 ml. The method was successfully applied to the orthophosphate determination in standard solutions and artificial marine water solutions.

References

1. Paytan, A., McLaughlin. Chem. Rev., 2007, 107, 563–76.

2. Elser J.J. Curr. Opin. Biotech., 2012, 23, 833–838.

3. Karl D.M. Nature, 2000, 406, 31-33.

4. Lin S., Litaker R.W., Sunda W.G. J. Phycol., 2016, 52, 10–36.

5. Strickland J.D.H., Parsons T.R. A Practical Handbook of Seawater Analysis, 2nd ed. Ottawa, Fisheries Research Board of Canada, 1972, 310 p.

6. Standard Method for Examination of Water and Wastewater, 20th edition. Washington, American Public Health Association (APHA), 1999, 1325 p.

7. Huang X.-L., Zhanga J.-Z. Anal. Chim. Acta, 2006, 580, 55–67.

8. Motomiz S., Wakimoto I., Toei K. Anal. Chim. Acta, 1982, 138, 329–338.

9. Liang Y., Yuan D., Li Q., Lin Q. Mar. Chem., 2007, 103, 122–130.

10. Ma J., Yuan D., Liang Y., Dai M., 2008. J. Oceanogr., 64, 443–449.

11. Nasu T., Minami H. Analyst, 1989,114, 955–958.

12. Taniai T., Sukegawa M., Sakuragawa A., Uzawa A. Talanta, 2003, 61, 905–912.

13. Frank C., Schroeder F., Ebinghaus R., Ruck W. Talanta, 2006, 70, 513–517.

14. Fogg A.G., Soleymanloo S., Burns D.T. Anal. Chim. Acta, 1977, 88, 197–200.

15. Susanto J.P., Oshima M., Motomizu S., Mikasa H., Hori Y. Analyst, 1995, 120, 187–191.

16. Karl D.M., Tien G. Limnol. Oceanogr.,1992, 37, 105–116.

17. Thomson-Bulldis A., Karl D.M. Limnol. Oceanogr., 1998, 43, 1565–1577.

18. Laws E.A., Pei S., Bienfang P., Grant S. Aquaculture, 2011, 322–323, 117–121.

19. Katsaounos C.Z., Giokas D.L., Vlessidis A.G., Paleologos E.K., Karayannis M.I. Sci. Total Environ., 2003, 305, 157–167.

20. Коростелев П.П. Приготовление растворов для химико-аналитических работ. М.: Наука, 1964. 398 c.

Korostelev Р.Р. Preparation of solutions for chemical and analytical works. Moscow, Nauka, 1964, 398 p. (In Russian).

21. Kester D.R., Duedall I.W., Connors D.N., Pytkowcz R.M. Limnol. Oceanogr., 1967, 12 (1), 176–179.

22. Кутейников A.Ф. Заводская лаборатория. Диагностика материа-лов, 1962, 28(10), 1179–1182.

Kuteynikov A.F. Zavodskaya laboratoriya. Diagnostika materialov, 1962, 28(10), 1179–1182. (In Russian).

23. Саввин C.Б. Арсеназо III. Методы фотометрического определе-ния редких и актинидных элементов. М: Атомиздат, 1966, 256 с.

Savvin S.B. Arsenazo III. Methods for photometric determination of rare and actinide elements. Moscow, Atomizdat, 1966, 256 p. (In Russian).

24. Ekberg C., Källvenius G., Albinsson Y., Brown P.L. J. Solution Chem., 2004, 33(1), 47–79.

25. Pershina V., Trubert D., Le Naour C., Kratz J.V. Radiochim. Acta, 2002, 90, 869–877.

26. Hu Y.-J., Knope K.E., Skanthakumar S., Kanatzidis M.G., Mitchell J.F., Soderholm L. J. Am. Chem. Soc., 2013, 135, 14240−14248.

27. Takasaki F., Fujiwara K., Nakajima Y., Nishikawa T., Masu H., Imanari M., Hidakac Y., Ogawa N. Dalton Trans., 2015, 44, 645–652.

28. Лурье Ю. Ю. Справочник по аналитической химии. М: Хи-мия,1989, 448 c. Lure Yu. Yu. Reference book of analytical chemistry. Moscow, Chemistry,1989, 448 p. (In Russian).

29. Блюменталь У.Б. Химия циркония. М.: Из-во иностранной лите-ратуры, 1963. 343 c.

Blyumental U.B. The chemistry of zirconium. Moscow, Izdatelstvo inostrannoy literatury, 1963, 343 p. (In Russian).

30. Паустовська А., Запорожець О., Поліщук К., Коноваленко А. Віс-ник Київського національного університету імені Тараса Шевченка: Хімія, 2015, 51(1), 42–47.

Paustovska A., Zaporozhets O., Polishchuk K., Konovalenko A. Visnyk Kyivskoho natsionalnoho universytetu imeni Tarasa Shevchenka: Khimiia, 2015, 51(1), 42–47. (In Ukrainian).

31. Паустовська А.С., Зінько Л.С., Запорожець О.А., Наконечна В.В., Погребняк О.С. Методы и объекты химического анализа, 2015, 10(2), 53–60.

Paustovska A.S., Zinko L.S., Zaporozhets O.А., Nakonechna V.V., Pogrebnyak O.S. Methods and Objects Chem. Anal., 2015, 10(2), 53–60. (In Ukrainian).

32. Бабко А.К., Гридчина Г.И. Журн. неорг. химии, 1961, 6, 1326.

Babko A.K., Gridchina G.I. Zh. Neorg. Khim., 1961, 6, 1326. (In Russian).

33. Бабко А.К., Гридчина Г.И. Журн. неорг. химии, 1962, 7, 889.

Babko A.K., Gridchina G.I. Zh. Neorg. Khim., 1961, 7, 889. (In Russian)

34. Karmarkar S.V. J. Chromatogr. A, 1999, 850, 303–309.

35. Lyddy-Meaney A.J., Ellis P.S., Worsfold P.J., Butler E.C.V., Mckelvin I.D. Talanta, 2002, 58(6), 1043–53.

36. Haberer J.L., Brandes J.A. Mar. Chem., 2003, 82, 185–196.

37. Ueda T., Hojo M., Shimizu K. Anal. Sci., 2001, 17(12), 1431–1435.

38. Giokas D.L., Paleologos E. K., Karayannis M. I. Int. J. Environ. Anal. Chem., 2003, 83(2), 167–175.

39. Медвецкий А.В., Тихомирова Т.И., Цизин Г.И., Дмитриенко С.Г., Золотов Ю.А. Журн. аналит. химии, 2003, 58(9), 944–947.

Medvetskiy A.V., Tihomirova T.I., Tsizin G.I., Dmitrienko S.G., Zolotov Yu.A. Zhurn. Analit. Himii., 2003, 58(9), 944–947(in Russian).

Published

2016-12-06

How to Cite

INDICATOR SYSTEM "ZR(IV)-ARSENAZO I" FOR ORTHOPHOSPHATE DETERMINATION IN FRESH AND BRAKISH WATERS: UDC 543.34; 543.062; 543.42.062. (2016). Bulletin of the Taras Shevchenko National University of Kyiv. Chemistry, 52(1), 46-50. https://chemistry.bulletin.knu.ua/article/view/8596

Most read articles by the same author(s)

1 2 > >>