IR-SPECTRAL INVESTIGATIONS OF DIMETHYL-N-TRICHLOROACETYLAMIDOPHOSPHATE AND ITS SOME COMPOUNDS
UDC 547.022+543.421/.424
Keywords:
dimethyl-N-trichloroacetylamidophosphate, deuteroanalogue, IR-spectroscopyAbstract
Partially H[L‑d6]) and full (D[L‑d6]) deutero-substituted analogues of dimethyl-N-trichloroacetylamidophosphate (H[L]) as well as its sodium salts (Na[L]) and (Na[L‑d6]) have been synthesized. It was shown the possibility of their interconversion excepting the direct replacement of protons of the methyl groups on deuterons. The detailed comparative analysis of IR- spectra clearly allowed ascribing of the absorption bands corresponding to N-H and C-H valence and deformation vibrations in dimethyl-N-trichloroacetylamidophosphate molecule. The shape of the absorption band N-H in the region 3068 cm-1 (for N-D – 2262 cm-1) demonstrates the realization of imidic structure among three of theoretically possible tautomeric forms of H[L] in solid state. In the spectra of the sodium salts the absence of these bands indicates the existence of dimethyl-N-trichloroacetylamidophosphate in the anionic form. Isotopic substitution of methyl protons leads to a significant low-frequency shift of the bands of stretching and deformation vibrations: (nas+sC-H) 2958–2885 cm-1, (das+sC-H) 1460 cm-1 in the spectrum of H[L] and (nas+sC-D) 2274–2082 сm-1, (das+sC-D)
1335 сm-1 in the spectrum of D[L-d6] respectively. The low-frequency shifts (D » 60–100 сm‑1) of characteristic n(C=O) band were observed in the spectra of onic- salts and complexes due to delocalization of p-electron density in the OCNPO – chelate fragment under deprotonation or coordination. The same tendency reveals n(P=O) band (D » 38–128 сm‑1). The biggest low-frequency shift (128 cm-1) was fixed for this absorption band in the spectrum of SbPh4[L], that allowed the definition of the most preferable donor centre of dimethyl-N-trichloroacetylamidophosphate-anion [L]- - the oxygen atom of phosphoryl group.
References
1. Смит А. Прикладная ИК-спектроскопия: основы, техника, аналити-ческое применение. М.: Мир, 1982, 328 с.
Smit A. Applied infrared spectroscopy: fundamentals, techniques, analytical application. Moscow, Mir, 1982, 328 p.
2. Накамото К. Инфракрасные спектры неорганических и координа-ционных соединений. М.: Мир. 1966, 411 с.
Nakamoto K. Infrared spectra of inorganic and coordination compounds. Moscow, Mir, 1966, 411 p.
3. E.A. Bundya, V.M. Amirkhanov, V.A.Ovchynnikov, V.A.Trush, K.V. Do-masevitch, J.Sieler, V.V. Skopenko. Z. Naturforsch, 1999, 54b, 1033-1038.
4. Сущик О.В., Труш В.О., Амірханов В.М., Домасевич К.В. Вісник КНУ імені Тараса Шевченка, 2004, №41, 12–15.
Suschyk O.V., Trush V.O., Amirkhanov V.M., Domasevych K.V. Visnyk Kyivs'koho natsional'noho universytetu imeni Tarasa Shevchenka. Khimiia, 2004, 41, 12–15.
5. Фосфазосоединения. (Под ред. А.В. Кирсанова). Киев: Наук. дум-ка, 1965, 154–160.
Phosphazocompounds. (Editor A.V. Kirsanov). Kiev, Nauk. dumka, 1965, 154–160.
6. Амирханов В.М., Труш В.А. Журн. общ. химии, 1995, № 7, 1120-1124.
Amirkhanov V.M., Trush V.A. Zhurnal obshhej himii, 1995, 7, 1120–1124.
7 K.E. Gubina, V.M. Amirkhanov, J.Swiatek-Kozlowska, V.A. Trush, K.V. Domasevitch. Polyhedron, 2005, 24(9), 1007-1014.
8. М.И. Кабачник, В.А. Гиляров, Е.М. Попов. Изв. АН СССР отд. х. н., 1961, 1022–1030.
Kabachnik M.I., Giljarov V.A., Popov E.M. Yzv. AN SSSR, otdelenie himicheskih nauk, 1961, 1022-1030.
9. Деркач Г.И., Губницкая Е.С., Шокол В.А., Кисиленко А.А. Журн. общ. химии, 1964, 34(1), 82-85.
Derkach H.I., Gubnickaja E.S., Shokol V.A., Kisilenko A.A. Zhurnal obshhej himii, 1964, 34(1), 82-85.
Downloads
Published
Issue
Section
License
Copyright (c) 2016 В. Труш, канд. хім. наук

This work is licensed under a Creative Commons Attribution 4.0 International License.
