EFFECT OF MODIFIERS BASED ON AZOLE-CONTAINING PHENYL METHACRYLATES ON THE THERMAL STABILITY OF POLYSTYRENE

DOI: https://doi.org/10.17721/1728-2209.2025.1(60).3

Authors

Keywords:

polystyrene, azoles, phenyl methacrylates, thermo-oxidative degradation, thermogravimetry, kinetic characteristics, activation energy, thermostabilization.

Abstract

Background. This study investigated the effect of 4-(1H-pyrazol-1-ylmethyl)phenylmethacrylate (m1) and 4-(1H-1,2,4-triazol-1-yl)phenylmethacrylate (m2) on the kinetics and parameters of the thermal oxidative degradation of polystyrene modified with them using dynamic thermogravimetric analysis (TGA).

Methods. The synthesis of polystyrene and modified samples was carried out by the method of intra-chain doping by adding 3 mol% of monomer additives to the base monomer during its radical thermally initiated polymerization.

Results. The thermal oxidation degradation behavior of the modified polystyrene samples was analyzed and compared with unmodified polystyrene synthesized under identical conditions. The comparison was aimed at evaluating how the introduction of azole-containing phenyl methacrylates affects the thermal stability of polystyrene. Using the Coates-Redfern kinetic model, the thermogravimetric analysis data were processed and the activation energy (Ea), pre-exponential factor (Z), and rate constant (k) of degradation were calculated.

Сonclusions. It has been shown that the m2 monomer, when covalently introduced into the polymer, can be recommended for practical use in the manufacture of thermally stabilized polystyrene.

References

Bourbigot, S., Gilman, J. & Wilkie, C. (2004). Kinetic analysis of the thermal degradation of polystyrene–montmorillonite nanocomposite. Polym. Degrad. Stab., 84, 3, 483-492. DOI: 10.1016/j.polymdegradstab.2004.01.006

Coats, A.W. & Redfern, J.P. (1964) Kinetic parameters from thermogravimetric data. Nature, 201, 68-69. DOI: 10.1038/201068a0.

El-Saidi, M., Swelam, S., Khaireldin, N., & El-Sayed, A. (2024). Recent modification of polyvinyl chloride (PVC) via heterocyclic compounds. Egypt. J. Chem., 67(10), 513-526. DOI: 10.21608/ejchem.2024.268840.9306

Flynn J.H., (2002). Polymer Degradation. Handbook of thermal analysis and calorimetry. Elsevier Science B.U. 587.

Jenkins H.G. (1978). Aspects of Degradation and Stabilisation of Polymers. 217.

Karabets, Y., Kolendo, A., Demchenko, O., Iukhymenko, N., & ByedaA. (2016). Synthesis and investigation of bromine containing oxy- and propionoxyphenylimides for polymers thermostabilization. Mol. Cryst. Liq. Cryst., 640, (1), 54-58. DOI: 10.1080/15421406.2016.1255512AQ6

Mohan, B., & Shaalan, N. (2023). Highly thermally stable and biologically active compounds prepared to be polymer stabilizers consisting of a schiff base and its complexes derived from 2-hydroxynaphthaldehyde. J. Med. Chem. Sci., 6(2), 355-364. DOI:10.26655/JMCHEMSCI.2023.2.16

Nahi, R., & Imran, N. (2019). Synthesis, characterization and thermal stability study of new heterocyclic compounds containing 1,2,3-triazole and 1,3,4-thiadiazole rings. Orient. J. Chem., 35, 1, 234. DOI: 10.13005/ojc/350128

Najem, W., Hassan, M., Al-Slami, S., & Radhi, A. (2022). Synthesis and studying antibacterial activity of new nitrogen rich polymers. Polymers Egypt. J. Chem., 65, 2, 29-33. DOI: 10.21608/EJCHEM.2021.34931.2727

Nestorak, J., Kolendo, A., Demchenko, O., & Iukhymenko, N. (2008). Thermal stabilizing properties of maleimidophenylmethacrylates derivatives with substitutes of various molecular arhitectures in imide cycle. Mol. Cryst. Liq. Cryst., 497, 299-306 DOI: 10.1080/15421400801921991

Peterson, J., Vyazovkin, S., & Wight, C. (2001). Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol. Chem. Phys., 202, 775-78 4. DOI: 10.1002/1521-3935(20010301)202:6%3C775::AID-MACP775%3E3.0.CO;2-G

Reich, L., & Stivala, S. (1969). Autoxidation of hydrocarbons and polyolefins, M. Dekker, New York, 50.

Rose, N., Le Bras, M., & Bourbigot, S. (1996). Comprehensive study of the oxidative degradation of an epoxy resin using the degradation front model. Polym. Degrad. Stab., 54, 355–360.

Schulz, M., Wegwart, H. W., Stampehl, G. & Riediger, W. 1. (1976). Polym. Sci., Polym. Symp., 57 329.

Sykam, K., Donempudi, S., & Basak, P. (2022). 1,2,3-Triazole rich polymers for flame retardant application: A review. J. Appl. Polym. Sci., 139, 32, e52771. DOI: 10.1002/app.5277110.21608/EJCHEM.2021.34931.2727

Syromiatnikov V., Kolendo, A., Savchenko, I., Yashchuk, V., Paskal, L., & Prot, T.(1998). Studies on aging and intrachain stabilization of styrene-based polymeric materials. Reactive & Functional Polymers, 38, 31-34.

Tilloev, L., Dustov, K., & Murodov M. (2022). Research of composition of oily part, obtained from the “Yellow oil”-wastes of pyrogas cleaning process by the method chromatography-mass spectrometry analysis. 2373, 4, 042001. DOI: 10.1088/1742-6596/2373/4/042001.

Tilloev, L., Dustov, K., & Turakhujaev, S. (2022). Application of polycrotonaldehyde, obtained from recycling the waste “yellow oil”, in production of lubricants Journal of Physics. 2388, 1, 012163. DOI:10.1088/1742-6596/2388/1/012163.

Published

2025-12-28

How to Cite

EFFECT OF MODIFIERS BASED ON AZOLE-CONTAINING PHENYL METHACRYLATES ON THE THERMAL STABILITY OF POLYSTYRENE: DOI: https://doi.org/10.17721/1728-2209.2025.1(60).3. (2025). Bulletin of the Taras Shevchenko National University of Kyiv. Chemistry, 60(1), 18-24. https://chemistry.bulletin.knu.ua/article/view/4038