SYNTHESIS AND PROPERTIES OF 3-(4-ARYL-5-(ARYLCARBOXAMIDO)THIAZOLE-2-YL)CHROMONES
DOI: https://doi.org/10.17721/1728-2209.2025.1(60).4
Keywords:
[4-aryl-5-(arylcarboxamido)thiazol-2-yl]acetoacetonitriles, α-[4-aryl-5-(arylcarboxamido)thiazol-2-yl]acetophenones, 3-(4- aryl-5-(arylcarboxamido)thiazol-2-yl)chromones, heterocyclization, Mannich reaction.Abstract
Background. The wide spectrum of biological activity of 3-thiazolylchromones and their low toxicity determines the relevance of research on synthesis and study of their chemical and biological properties. Previously, we developed a method for the synthesis of α-thiazolyl-2,4-dihydroxyacetophenones based on substituted resorcinols and thiazolylacetonitriles and showed the possibility of their cyclization into 3-thiazolylchromones. The aim of this study was the synthesis of new derivatives of 3-thiazolylchromones containing additional functional group in the thiazole cycle.
Heterocyclization as a method of 3-(4-aryl-5-(arylcarboxamido)thiazol-2-yl)chromones synthesis; Mannich reaction, spectral characteristics of synthesized substances.
Methods. Organic synthesis of 3-(4-aryl-5-(arylcarboxamido)thiazol-2-yl)chromone derivatives; characterization of the synthesized substances using 1H NMR and IR spectroscopy.
Results. Based on 4-ethylresorcinol and {4-aryl-5-(arylcarboxamido)thiazol-2-yl]acetonitriles, a number of α-[4-aryl-5-(arylcarboxamido)thiazol-2-yl)]acetophenones were synthesized and their further heterocyclization with ethyl orthoformate and carboxylic acid anhydrides led to new derivatives of 3-(thiazol-2-yl)chromones, namely 2-(un)substituted 3-(4-aryl-5-(arylcarboxamido)thiazol-2-yl)chromones. The aminomethylation reaction with bisdimethylaminomethane with the formation of the corresponding Mannich base was investigated.
Conclusions. It was established that [4-aryl-5-(arylcarboxamido)thiazol-2-yl]acetoacetonitriles successfully react with resorcinols under the modified conditions of the Houben–Hoesch reaction with the formation of α-[4-aryl-5-(arylcarboxamido)thiazol-2-yl )]acetophenones, which are key synthons for further heterocyclization into the corresponding 3-(thiazol-2-yl)chromones. It was shown that the Vilsmeier reaction was more successful than the Venkataraman synthesis for obtaining chromatographically pure terminal chromones. Modification of the corresponding chromones by aminomethylation is a promising direction for the synthesis of biologically active compounds.
References
Andrews, S. P., Mason, J. S., Hurrell, E., & Congreve, M. (2014). Structure-based drug design of chromone antagonists of the adenosine A2A receptor. MedChemComm, 5(5), 571-575. https://doi.org/10.1039/C3MD00338H
Belkessam, F., Derridj, F, Zhao, L., Elias, A., Aidene, M., Djebbar, S., & Doucet, H. (2013). Pd – catalysed heteroarylations of 3-bromochromen-4-one via C-H bond activation of heteroarenes. Tetrahedron Letters 54 (36), 4888-4891. https://doi.org/10.1016/j.tetlet.2013.06.137
Benny, A. T., Arikkatt, S. D., Vazhappilly, C. G., Kannadasan, S., Thomas, R., Leelabaiamma, M. S., Radhakrishnan, E. K. & Shanmugam, P. (2022). Chromone, a privileged scaffold in drug discovery: Developments in the synthesis and bioactivity. Mini Reviews in Medicinal Chemistry, 22(7), 1030-1063. https://doi.org/10.2174/1389557521666211124141859
Chhabria, M. T., Patel, S., Modi, P., & Brahmkshatriya, P. S., (2016). Thiazole: A review on chemistry, synthesis and therapeutic importance of its derivatives. Current topics in medicinal chemistry, 16(26), 2841-2862. https://doi.org/10.2174/1568026616666160506130731
Edwards, B. S., Bologa, C., Young, S. M., Balakin, K. V., Prossnitz, E. R., Savchuck, N. P., Sklar, L. A. & Oprea, T. I. (2005). Integration of Virtual Screening with High-Throughput Flow Cytometry to Identify Novel Small Molecule Formylpeptide Receptor Antagonists. Molecular Pharmacology, 68(5), 1301-1310. https://doi.org/10.1124/mol.105.014068
Frasinyuk, M. S., & Khilya, V. P. (2008). Chemistry of hetero analogs of isoflavones 26. Synthesis of 2-alkyl derivatives of 3-(thiazol-2-yl)-and 3-(benzothiazol-2-yl)chromones. Chemistry of Heterocyclic compounds, 44(6), 666-670. https://doi.org/10.1007/s10593-008-0092-7
Frasinyuk, M. S., Bondarenko, S. P., Gorbulenko, N. V., Turov, A. V., & Khilya V. P. (2014). Cyclic Carboxylic Anhydrides as New Reagents for formation of Chromone Ring. Journal of Heterocyclic Chemistry, 51(3), 768-774. https://doi.org/10.1002/jhet.1721
Garg C. P., Prabha, Sh. V., & Kapoor, R. P. (1985). Synthesis of 3-(6-arylimidazo[2,1-b]thiazol-3-yl)-2-methylchromones Indian Journal of Chemistry, Sect. B, 24B(1), 1197-1200.
Garg, C. P., Sharma, V. P., Chhabra V., & Kapoor, R. P. (1988). Synthasis of 3-[2(pyrazol-1-yl)-4-thiazolyl}-2-methylchromones. Indian Journal of Chemistry, Sect. B, 27B(5), 469-471.
Ghosh C. K., Ghosh C., Karak S. K., & Chakravarty A. K. (2004). Benzopyrans. Part 451. Reactions of monobrominated 3-acetyl-2-methyl-1-benzopyran-4-one with some binucleophiles. Journal of Chemical Research, 2004(1), 84-86. https://doi.org/10.3184/030823404323000927
Gorbulenko, N., Shokol, T., Frasyniuk, M., Pokhyla, B., Khilya, V. (2014). 3-Thiazolylchromones - potential bispharmacophoric drugs. Current problems of chemistry and chemical technology: All-Ukrainian scientific and practical conference, November 20-21, 2014 / Ministry of Education and Science of Ukraine; National University of Food Technologies. (pp. 74-75). Kyiv: NUHT, 2014. https://dspace.nuft.edu.ua/handle/123456789/19121
Gorbulenko, N. V., Turov, A. V. & Khilya, V. P. (1995). Chemistry of modified flavonoids. XVIII. Thiazole analogs of isoflavones. Homologous and isomeric series. Chemistry of Heterocyclic compounds, 31(4), 441–448. https://doi.org/10.1007/BF01177015
Grishko, L. G., Turov, A. V., Spasenov M. G., & Khilya, V .P., (1981). Thiazole analogs of chalcone and flavone. Chemistry of Heterocyclic compounds, 17(9), 893–898. https://doi.org/10.1007/BF00505592
Jespers, W., Verdon, G., Azuaje, J., Majellaro, M., Keränen, H., García‐Mera, X., Congreve, M., Deflorian, F., de Graaf, C., Zhukov, A., Doré, A. S., Mason J. S., Åqvist, J., Cooke, R. M., Sotelo, E., & Gutiérrez‐de‐Terán, H. (2020). X‐ray crystallography and free energy calculations reveal the binding mechanism of A2A adenosine receptor antagonists. Angewandte Chemie International Edition, 59(38), 16536-16543. https://doi.org/10.1002/anie.202003788
Kapoor, R. P., Rastogi, M. K., Khanna, R., & Garg, C. P. (1984). Synthesis of thiazolylchromones as potential CNS agents. Indian Journal of Chemistry, 23B(4), 390-392.
Kapoor R. P., Sharma, V. P., Singh O. V., & Garg, C. P. (1991). Synthesis of 3-(2-N-substituted aminothiazol-4-yl)-2-methylchromones and 6-(2-N-substituted aminothiazol-4-yl)-2,3-dimethylchromones as potential CNS agents. Indian Journal of Chemistry, Sect. B, 30B(12), 1152-1155.
Khatik, G. L., Datusalia, A. K., Ahsan, W., Kaur, P., Vyas, M., Mittal, A., & Nayak, S. K. (2018). A retrospect study on thiazole derivatives as the potential antidiabetic agents in drug discovery and developments. Current drug discovery technologies, 15(3), 163-177. https://doi.org/10.2174/1570163814666170915134018
Khilya, V .P., Szabo, V., Grishko, L. G., Vikhman, D. V., Babichev, , F. S. & Dymovich, V. A.. (1975). Chemistry of heteroanalogs of isoflavones: II. Synthesis and properties of thiazole analogs of isoflavones. Chemistry of Heterocyclic compounds, 11(8), 898–903. https://doi.org/10.1007/BF00470486
Khilya, V. P., Vakulenko, V. F., & Kupchevskaya, I. P. (1979). Chemistry of heteroanalogs of isoflavones. Chemistry of Heterocyclic compounds, 15(1), 19-22. https://doi.org/10.1007/BF00471190
Langmead, C. J., Andrews, S. P., Congreve, M., Errey, J. C., Hurrell, E., Marshall, F. H., Mason, J. S., Richardson, C. M., Robertson, N., Zhukov, A., & Weir, M. (2012). Identification of novel adenosine A2A receptor antagonists by virtual screening. Journal of medicinal chemistry, 55(5), 1904-1909. https://doi.org/10.1021/jm201455y
Narasimhamurthy, K. H., Swaroop, T. R., & Rangappa, K. S. (2024). A review on progress of thiazole derivatives as potential anti-inflammatory agents. European Journal of Medicinal Chemistry Reports, 12, 100225. https://doi.org/10.1016/j.ejmcr.2024.100225
Pivovarenko, V. G., & Khilya, V. P. (1991). Acetoformic anhydride in the synthesis of chromones. 1. Synthesis of 3-hetarylchromones. Chemistry of Heterocyclic compounds, 27(5), 496–501. https://doi.org/10.1007/BF00473991
Sharma, V., Sharma, A., Wadje, B. N., & Bharate, S. B. (2024). Benzopyrone, a privileged scaffold in drug discovery: An overview of FDA‐approved drugs and clinical candidates. Medicinal Research Reviews, 44(5), 2035-2077. https://doi.org/10.1002/med.22032.
Slivchuk S.R., Brovarets V.S., Drach B.S. (2005). Cyclization of condensation products of 4-ayl-5-acylaminothiazol-2-yl-5-acetonitriles with aromatic aldehydes. J. Org. Pharm. Chem. 3(1), 25-32.
Smolii, O. B., Panchishin, S. Y., Pirozhenko, V. V. & Drach B. S. (2001). Phosphonium Ylides Stabilized with Cyano Group and 5-Acylamino-4-phenyl-2-thiazolyl Residue. Journal of General Chemistry, 71, 1734–1736. https://doi.org/10.1023/A:1013986223340
Shokol, T. V., Gorbulenko, N. V., Turov, A. V. & Khilya, V. P. (2012). Synthesis of 6-alkyl-2-dialkylaminomethyl-7-hydroxy-3-(4-methylthiazol-2-yl)-4H-chromen-4-ones. Chemistry of Heterocyclic compounds, 48(8), 1181–1186. https://doi.org/10.1007/s10593-012-1119-7
Shuntaro, T., Chosaku, Y., Takihiro, I., Keiichi, T., Ryuko, T., Hideyoshi, N., Tomoya, S., & Shinji, M. (1990). 4Н-1-Benzopyran-4-one derivative or its salt, process for producing the same and pharmaceutical composition comprising the same as active ingredient. (USA Patent № 4954518 122396).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Наталія ГОРБУЛЕНКО, Богдан ПОХИЛА, Тетяна ШОКОЛ, Магдаліна ЦАПКО, Володимир ХИЛЯ

This work is licensed under a Creative Commons Attribution 4.0 International License.
