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The condition of structural researches a metallic melts  in the world, in Ukraine and in the physical-chemistry faculty is 
reviewed.  
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All combination of X-ray research of a constitution of molten welding fluxes and some model slag systems was reviewed. 
These activities are conducted on physical-chemistry department of the National Taras Shevcenko University of Kiev and in 
department of welding materials of the Paton welding Institute. 
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Inst. Min.Met. London 1953; p.46 10. J.F. Elliot. Slags for metallurgical 
process. Second International Symposium on Metall. Slags and Fluxes. Tall 
extract and Process Met. Meet.- 1984, p.45-61.11. Frohberg M.C. and 
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. , ., . , . . ,
. , . . , . , - .

 3,5- -
 1 - . , , . -

, .

Inhibition efficiency of the catalytic activity of alkaline phosphatase by novel 3,5-substituents of 1 -pyrazolate was examined. 
This indicates that among four tested compounds there are competitively and uncompetitively inhibitors. It was shown that 
magnesium ions do not influence on inhibitor effect. 
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(L3) (1E,1'E)–1,1'–(4– –1H– –3,5– ) -
 (L4)

,
.

3–[(1E)–N–
]–4–

–1H– –5–
 (L1) 

(E,E)–(4– –1H–
–3,5– )

( )
(L2)

3,5-
 (L3) 
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Perkin-Elmer 2400 CHN 
 1080º

-
 CO2, H2O  N2 .

-
. - . -
 (EI) 

Finnigan TSQ 700. - .
1 , 13

293 Bruker AC-400
(1H: 400.13 M , 13C: 75.43 M ).

-d6,
 – . δ. -

. -
 Perkin-Elmer 180 (200–4000 –1)

 KBr. -
 [1; 2; 3], 

 [8]. 
. -

Specord S 100  Analytik Jena 
 1,0 

(Suprasil QS Firma Hellma). -

 400 ,  4-
-  (ε = 13990 –1· 3· –1),

 (  = 7,15 ).
.  3-[(1E)-N-

]-4- -1H- -5-
 (L1): 3- -4- -1 - -5-
 [9] (3 , 0,018 ), NH2OH·HCl (1,86 ,

0,027 ), CH3COONa (2,80 , 0,027 )
 (50 ). -

,  4 
. -

 10-12 .
 ( -

 1).  – 67 %. . = 220 ° . :
(%)  45,23; H 5,36; N 22,44; (%) 

 45,90; H 4,95; N 22,94. EI-MS: m/z (%): 182 [ – ]+,
75 %.  ( –1): . 780, 970, 1000; . 1100, 
1180; νN–O 1005; 3 1260;  1400; νCN 1690; νC=

1590. 1H MP:  = 2,13 (s, 3H, CH3), 2,34 (s, 3H, CH3Pz),
11,08 (br, 1 , N–OH). 13C MP:  = 29,9 (CH3Pz); 30,6 
(CH3k t.); 121,1; 125,6; 129,2 (3CPz).

 (E,E)–(4– –1H– –3,5– ) ( -
)  (L2): 4- -3,5- -1 -

 [9] (9,1 , 0,055 ), NH2OH·HCl (15,29 ,
0,22 ), CH3COONa (22,88 , 0,22 )

 (250 ). -
,  4 

, .
 10–12 -

. . -
 – 81,7 %. . = 212÷213° . :

(%)  49,23; H 5,96; N 28,44; (%) 
 48,98; H 6,12; N 28,57. EI-MS: m/z (%): 196,0 [ – ]+,
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1180; νN–O 1010; 3 1260;  1400; νC=N 1635. 1H M :
2,17 (6H, CH3), 2,25 (3H, CH3Pz).

13C M : 29,9 (CH3Pz);
30,6 (CH3 .); 121,1; 125,6; 129,2 (3CPz).

 (1E,1'E)–1,1'–(4– –1H– –3,5– -
)  (L4): 4- -3,5- -1 -

 (1 , 0,006 ), N2H4· 2  (1,2 , 0,024 ),
 (20 ).

1–2 . -
, . -

. -
 – 81,7 %. . = 275° . :

(%)  47,57; H 7,47; N 43,62;  (%)  49,47; 
H 7,26; N 43,27. EI-MS: m/z (%):194,0 [ ], 100 %.  ( –1): 
νN  3271; νC=N 1592. 1H M : 2,00 (6H, CH3), 2,23 (3H, 
CH3Pz), 6,18 (4 , NH2), 12,35 (1H, NPz-H).
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 60 / . -
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1/[ NPP])
,  Vmax -
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+ (KM·kcat·[ ]·[ ]0)

–1      (1) 
, . 2( )  2( ), -
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, o -
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, -

.
, . 2( )  2( ), -
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' -

. ,
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.

 1 . ,
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· –1
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· –1· –1
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PzOxCA 6,50 2,92 
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PzDHn 9,94 3,35 
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Adsorption and catalytic properties of sensor materials based on SnO2 promoted by 3-d metals (Co, Fe, Ni, Cu) are 
investigated. Maximal products desorption temperatures for all catalysts on a few tens of degrees are lower than total-lot 
conversion temperatures of reagents for H2 and CO oxidation reaction. It is to be evidence that under catalysis desorption 
step is not limited. 
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 1 .

t100,
o
C Tm

H
a
2

x
0
,

o
C E

d

H
2
0
, /

SnO2 490 330 (c.), ( . .) 170 

SnO2 + 0,111 . % Co 323 300 ( .), ( .) 165 

SnO2+ 0,313 . % Fe 345 300 ( .), ( .) 165 

SnO2 + 0,044 . % Ni 334 280 ( .), ( .) 160 

SnO2 + 0,039 . % Cu 330 300 ( .), ( .) 165 

 2 .  

t100,
o
C Tm

H
a
2

x
0
,

o
C E

d

H
2
0
, /

SnO2 430 180 (c.), ( . .) 129 

SnO2 + 0,111 . % Co 265 250 (c.), ( .) 150 

SnO2 + 0,313 . % Fe 280 250 (c.), ( .) 150 

SnO2 + 0,044 . % Ni 275 250 (c.), ( .) 150 

SnO2 + 0,039 . % Cu 272 250 (c.), ( .) 150 

. – ; . – ;
. . – ; . – .

-
, -

, -
- .

 3d- ' -
. -

.  3d-
 ( -

) - ' .

.
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, 2, -

.
 3d-  Sn 2

2 , -
 Sn 2 .

, -
.

- .
-

:
r = kCR,            (1), 

 R –  ( 2). 
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[ ] [ ] [ ] [ ]

[ ] [ ]

[ ] [ ]
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3

2 2O O 2 ,

R R ,

R R ,

k

k

k

+ → + →

+ →

→ +

 RO – H2O 2.
 (1) -

, k2

k1 k3 , , -
,  O2

.
 1  2 ,

2,  CO, -
-

, -
. ,

,
, k3 >> k2,

.

1. . . - -
. – ., 1977. 2. . ., . ., 

. .  Pt  Pd -
-

 // . . . – 2005. – .41,
.5. – . 302–306. 3. . ., . . -

-
// . . . – 2007. – .73, . 3. – . 3–15. 4.Vorotyntsev V., 
Maksimovich N., Yeremina L. Adsorption semiconductor gas sensors and 
heterogenous catalytic reaction mechanisms // S nsors and Actuators B.  
– 1996. – Vol. 35-36. – P. 333–337. 
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. , . . , . , . . , . , . .

 La–Pd  Ce–Pd -
 1850 .  La–Pt  Ce–Pt -

 35 . % . .
 –87,3 ± 3,9 /  Pd 64 . %  La–Pd  –96,0 

± 3,8 /  Pd 63 . % e–Pd. 

Enthalpies of mixing of binary liquid alloys La – Pd and Ce – Pd were investigated by calorimetry at 1850 K over the total 
composition range. Enthalpies of mixing in La – Pt and Ce – Pt were investigated in composition region 0 – 35 at. % of Pt. Great
exothermic effects of alloy formation have been observed. Minimum values of integral enthalpies of mixing are –87,3 ± 3,9 kJ·mol-
1 at mole fraction of palladium xPd=0,64 in La – Pd system and –96,0 ± 3,8 kJ·mol-1 at xPd=0,63 in Ce – Pd system. 

-
 ( ) ,

.
-
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.
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-

α- ,

.

α- x

:

 La–Pd, α(x) = –175,9 – 116,5x – 104,8x
2
 – 

848,9x
3
+ 838,4x

4
;

e–Pd, α(x) = –193,7 – 300,6 + 502,6
2
 –

1644,2
3
 + 1187,7

4
;

 La–Pt, αPt(x) = –212,5 – 489,8x + 114,8x
2
 –

2758,6x
3
;

 Ce–Pt, αPt(x) = –233,5 – 311,4x – 1418,1x
2
.
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 1. 
 La–Pd, La–Pt 

e–Pd, Ce–Pt ' .
, -

. -

, -
 [5; 6]. -

, , -
-

 (

χPd = 2,20; 

χPt = 2,28, , , χLa = 1,10). 
-

' , -
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6s)-  4d-  5d- 
.

 (  [2] 
EF(La) = 3,3 , EF(Pd) = 4,8 EF(Pt) = 5,3 ).
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 Pt– ,
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 La,  Ce,  Ni–Pd–Pt. 
,
 d-

: –24,3 /  ( 0
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( 0

PdH∆ ); –193,7 /  ( 0
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 1 . –Pd –Pt, /

 La–Pd, 1850 e–Pd, 1850 

xPd – H∆ – ∆
La
H  – ∆

Pd
H xPd – H∆ – ∆

Ce
H  – ∆

Pd
H

0 0 0 175,9 ± 9,5 0 0 0 193,7 ± 11,1 

0,1 17,2 ± 0,8 0,21 ± 0,05 170,2 ± 7,8 0,1 19,8 ± 1,0 - 0,41 ± 0,06 201,7 ± 9,8 

0,2 33,7 ± 1,8 1,8 ± 0,5 161,4 ± 7,1 0,2 39,6 ± 2,2 1,5 ± 0,6 192,0 ± 8,5 

0,3 49,4 ± 2,6 2,9 ± 0,9 157,7 ± 6,7 0,3 57,5 ± 3,1 7,3 ± 1,2 174,8 ± 7,5 

0,4 64,6 ± 3,7 5,4 ± 2,3 153,5 ± 5,9 0,4 73,3 ± 4,1 14,1 ± 2,5 162,3 ± 6,4 

0,5 78,2 ± 4,7 19,6 ± 4,7 136,8 ± 4,7 0,5 86,7 ± 4,1 28,7 ± 4,1 144,7 ± 4,1 

0,6 86,5 ± 4,0 62,4 ± 5,2 102,5 ± 2,1 0,6 95,0 ± 3,7 71 ± 5,7 111,1 ± 2,4 

0,7 84,5 ± 3,8 145,8 ± 8,7 58,2 ± 1,7 0,7 92,7 ± 3,9 158,9 ± 8,9 64,3 ± 1,7 

0,8 68,3 ± 3,3 255,4 ± 13,1 21,5 ± 0,9 0,8 75,1 ± 2,7 281,5 ± 10,1 23,4 ± 0,7 

0,9 38,7 ± 1,7 354,1 ± 15,7 3,7 ± 0,1 0,9 42,3 ± 1,4 389,9 ± 12,9 3,7 ± 0,1 

1,0 0 407,6 ± 18,0 0 1,0 0 445,8 ± 14,2 0 

 La–Pt, 1800  Ce–Pt, 1800 

xPt – H∆ – ∆
La
H  – ∆

Pt
H xPt – H∆ – ∆

Ce
H  – ∆

Pt
H

0 0 0 212,5 ± 10,4 0 0 0 233,5 ± 12,2 

0,05 10,7 ± 0,4 0,02 214,0 ± 8,0 0,05 11,5 ± 0,5 0,12 ± 0,05 228,0 ± 10,1 

0,10 21,4 ± 0,7 0,05 213,1 ± 6,6 0,10 22,8 ± 0,8 0,29 ± 0,08 225,9 ± 7,0 

0,15 32,0 ± 1,0 0,3 ± 0,05 211,5 ± 6,0 0,15 34,1 ± 0,8 0,30 ± 0,10 225,5 ± 5,0 

0,20 42,5 ± 1,3 0,6 ± 0,2 209,9 ± 5,9 0,20 45,4 ± 1,1 0,31 ± 0,13 225,6 ± 5,1 

0,25 52,9 ± 1,5 1,0 ± 0,3 208,6 ± 5,1 0,25 56,6 ± 1,4 0,5 ± 0,2 225,0 ± 5,1 

0,30 63,3 ± 2,0 1,4 ± 0,3 207,6 ± 5,9 0,30 67,8 ± 1,8 1,4 ± 0,3 222,7 ± 5,2 

0,35 73,5 ± 2,5 2,0 ± 0,5 206,3 ± 6,1 0,35 78,7 ± 2,7 3,6 ± 0,5 218,1 ± 6,8 
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(–227 / ) 0
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-

 2 .
-

0
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 La  Pr. e–
Pd, ,

,
. -

 Pd–Ce -
,  Pd–La, -

-
, -

,
. ,

.
 Pd–Ce  Ni–Ce 

, -
,

, , -
'  4f- .

1. . ., . . -

// . . . – 1987. – . 23,  2. – . 198–203. 2. -
. . . – .,1981. 3. Nikolaenko I.V. 

Some regularities in the thermochemistry of alloying of rare earths with late 
3d-transition metals // J. Alloys Comp. – 1995. – Vol. 225,  1. – P.474–
479. 4. Selected values of the thermodynamic properties of the elements  
/ Hultgren R., Desai P.D., Hawkins T.D. et al; ed. by R. Hultgren. – Ohio, 
1973. 5. Selhaoui N., Kleppa O.J. Standard enthalpies of formation of 
lanthanum alloys by high-temperature calorimetry // J. Alloys Comp. – 1993.  
– Vol. 191,  1. – P.1155–1158. 6. Selhaoui N., Kleppa O.J. Standard 
enthalpies of formation of some Ce alloys, Ce + Me (Me = Ni, Ru, Rh, Pd)  
// Z. Metallkunde. – 1993. – Vol. 84.  1. – P.11–14. 7. Usenko N.I., Iva-
nov M.I., Petiuh V.M., WitusiewiczV.T. Thermochemistry of binary liquid alloys 
with barium and lanthanide metals (europium, dysprosium and ytterbium)  
// J.Alloys Comp. – 1993. – Vol. 190,  2. – P.149–155. 8. Witusiewicz V.T., 
Ivanov M.I. High temperature calorimetric measurements on liquid Pd–La and 
Au–Gd alloys // J. Alloys Comp. – 1993. – Vol. 200,  2. –P.177–180. 
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 543.272.2 

. , ., . , . . ,
. , . . , . , .

, -

-1,2

- -
 (IV), ( )  0,15 . % -1,2 -

. -

2 . ,  40 ppm 2

, , , -
.

A Sol-Gel technology approach was used for creation of a sensitive layer of a semiconductor gas sensor on the base of SnO2

doped with Sb2O5 additives (0,15 mol %). Ethanediole-1,2 was utilized in the capacity of a solvent and substituting reagent. On the 
base of the obtained material a sensor was fabricated and dependence of its signal on the H2 concentration in air was studied. 
Higher sensitivity of the sensor towards 40 ppm of H2 in air was observed comparing to a sensor made on the base of material 
obtained via traditional co-sedimentation-from-water method. 
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. 1.  ( )

2 (ppm).  
 0,22 

-
 (40 ppm) ,

-
 ( . 1). 

, , ,

, . ,
- ,

,
,

, -
 [5]. 

. - -
 – -1,2 -

-
. ,

-
, -

.

 1 . ,

R0,  R ,

-  24900 6310 3.95 

- 1175 634 1.85 

1. , . ., , . ., , . . . -

 //  34593 .
. 15 . 2003 , . 2. 2. Bond, G., Fuller, M., Molloy, L. 

Oxidation of carbon monoxide catalyzed by palladium on tin(IV) oxide: an 
example of spillover catalysis // Proc. 6th Intern. Congr. Catalysis. London.  
– 1976. – P. 356-364. 3. Prudenziati, M. Present and future of thick film 
sensors // Handbook of Sensors and Actuators. – 1994. – Vol.1. – P. 457-
462. 4. Samson, S., Fonstad, C.G. Defect structure and electronic donor 
levels in stannic oxide crystals // J.Appl.Phys. – 1973. – Vol.44. – P. 4618-
4623. 5. Saraladevi, G., Masthan, S.K., Shakuntalav, M., Rao, J. Correlation 
between structural properties and gas sensing characteristics of SnO2 
based gas sensors // J. Mater. Sci: Materials in Electronics. – 1999.  
– Vol.10. – P. 545-549. 6. Tamaki, . Xu, J., Miura, N., Yamazoe, N. Grain 
size effects on gas sensitivity of porous SnO2-based elements // Sensors 
and Actuators. – 1991. – Vol.3. – P. 147-155. 7. Yamamoto, O., Sasamoto, 
T. Inagaki, M. Indium tin oxide thin films prepared by thermal decomposition 
of ethylene glycol solution // J. Mater. Res. – 1992. – Vol.7. – P. 2488-2492. 
8. Yamazoe, N., Kurokawa, Y., Seiyama, T. Effects of additives on 
semiconductor gas sensors // Sensors and Actuators. – 1983. – Vol.4. – P. 
283-289. 9. Zhang, G., Liu, M. Preparation of nanostructured tin oxide using 
a sol-gel process based on tin tetrachloride and ethylene glycol // J. Mater. 
Sci. – 1999. – Vol.34. – P. 3213-3219. 
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. , . . ,
, ., . , . .

REDOX 

 10 % u- ,
 ( =20-350

0
=20-500

0
). , -

 10 %Cu-  ( =20-350
0

) : u-NaZSM-5 (47) > Cu-NaX > Cu-
NaZSM-5 (69) > Cu-Na,K-ERI > u-NaZSM-5 (37) > Cu-NaA > Cu-NaM. , -

 – u
2+

, -
, -

-  ( < 300
0

).

The catalytic activity in CO oxidation of 10 %Cu-zeolite systems after their formation in various temperature intervals ( form

=20-350
0

 and form=20-500
0

) was investigated. It was established that activity of loaded 10 %Cu-zeolite systems ( form =20-
350

0
) decrease in the order: u-NaZSM-5 (47) > Cu-NaX > Cu-NaZSM-5 (69) > Cu-Na,K-ERI > u-NaZSM-5 (37) > Cu-NaA > Cu-

NaM. It was shown, that activity of zeolite systems mostly determined by the quantity of active centres – Cu
2+

 cations which 
practically haven't interaction with carrier surface, surround by oxygen ions with high reaction ability and easy undergo red-ox
processes ( < 300

0
).
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(1 % +20 % 2+79 % ) . -
 – 0,1 / .

 0,25 . -
 ( 100).

-

., . .

 2,5° /

 25–700° .
 0,5 .

-
 ( - 2)

-
 10 % 2+90 %Ar 

10 ° / .
 ( -

) Cu-
 UV VIS "Specord M-40"  200 – 

850 .
. -

 10 %Cu-
,  10 % u- , -

=20-350 °

=20-500 ° -

 – 100  194  292 °

 220  288 ° , . -
, -

, -

=20-350 ° ,  14 

97 °  –  29  98 °  – 
.  CuO 

,
10 %Cu-

,
,

 – .
 10 %Cu- ,

=20-350 ° , ,

 Cu-NaZSM-5 (47). 
, -

 Cu-NaM , -

, -

 12  45 ° .

 (45 ° )

 10 % u-NaX 

 (∆ 100 = 40 ° )
,

 ( .1).

 1 .  Cu-  ( =20-350 ° )

100, ,

I  II 
∆ 100,

I  II 

10 %Cu-NaZSM-5 (47) 198 194 4 21 15 

10 % u-NaX 246 206 40 45 14 

10 %Cu-NaZSM-5 (69) 228 222 6 22 16 

10 %Cu-Na,K-ERI 253 249 4 29 13 

10 %Cu-NaZSM-5 (37) 259 257 2 23 40 

10 %Cu-NaA 281 263 18 22 16 

10 %Cu-NaM 295 292 3 - 12 

 10 % u-  – 
-

.
 10 %Cu- -

,

 ( =20-350 °  20-500 ° ),
u-NaZSM-5

(47), Cu-NaX  Cu-NaZSM-5 (69). -

 350 ° -
,

 CuO -
.

=350 ° =500 °
 10 %Cu-NaA 

10 %Cu-NaZSM-5 (47). 
-

 ( 100).
-

 10 %Cu-  ( =20-350 ° )
:

u-NaZSM-5 (47) > Cu-NaX > Cu-NaZSM-5 (69) > Cu-
Na,K-ERI > u-NaZSM-5 (37) > Cu-NaA > Cu-NaM. 
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, ,
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 10 %Cu- -
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–O

2–
–), -

 – -
 [Cu

2+
 –O
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2+
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- 2 -
,  20-

350 ° ,  Cu-

 200  700 ° .
- 2

, -
 – -

.
,

 Cu-
NaZSM(47)  Cu-NaX -

 450 ° .  Cu-NaZSM-5 (69) -
 – -

 550 ° .
 Na, -ERI  NaZSM-5 (47) -

-

 –  650 ° .
 Cu-Na  Cu-NaA -

 700-750 ° ,
-

.
- 2 ,

10 % u-  ( =20-350 ° )
 Cu

2+
,

 300 °  (  2). -

-
- 2  – 

- 2 ,

.

 2 .
-  Cu-

max, °C

200 – 300 °C 300 – 400 °C > 400 °C

10 %Cu-NaZSM (47) 252, 282 326  

10 %Cu-NaX 255 323  

10 %Cu-NaZSM (69) 279 325  

10 %Cu-Na,K-ERI 293  414, 540 

10 %Cu-NaZSM (37)  350 440 

10 %Cu-NaA  307; 386 475; 520; 612 

10 %Cu-NaM  372 495 

. ,
10 % u- ,

=20-350 ° =20-500 ° -
 – 100 -

,  194-292 °  220-288 ° . -

-
- 2  10 % u-

 – 
- 2 ,

.

1. , . . -
. – . – 1978. – 367 . 2. Alekseev, O. S., 

Nosova, L. V., Ryndin, Yu. A. Formation and Properties of Dispersed Pd 

Particles over Graphite and Diamond // New Frontiers in Catalysis (Guczi, L. 
et al. (Editors)).: Proceedings of the 10th International Congress on 
Catalysis, Budapest, Hungary; Amsterdam, Elsevier. – 1992. Part A  
– P.837-847. 3. Chernavskiy, P. A., Lermontov, A. S., Pankina, G. V. et al. 
Effect of the ZrO2 Pore structure on the Reduction of a Supported Cobalt 
Oxide in Catalysts for Fischer-Tropsch Synthesis // Kinetics and Catalysis.  
– 2002. – Vol.43. – P.268-274. 4. Goryaschenko, S. S., Slovezkaya, K. I., 
Slinkin, A. A. The effect of preliminary treatment on the catalytic activity of 
cobalt-silica gel catalysts in the complete oxidation of methane // Kinetics 
and Catalysis. – 2001. – Vol.42. – P.525-526. 5. Kim, T. W., Song, M. W., 
Koh, H. L., Kim, K. L. Surface properties and reactivity of Cu/ -Al2O3 
catalysts for NO reduction by C3H6: Influences of calcination temperatures 
and additives //Applied Catalysis. A. – 2001. – Vol. 210. – P.35-44. 6. Meng-
Fei Luo, Ping Fang, Mai He, Yun-Long Xie In situ XRD, Raman, and TPR 
studies of CuO/Al2O3 catalysts for CO oxidation // Journal of Molecular 
Catalysis A: Chemical. – 2005. – Vol.239. – .243–248. 
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. , ., . , .,
. , . . , . , - .

 Al-Si 

 Al-
Si. , -

.
 Al-S . ,

.

The thermochemical properties of liquid Al-S  alloys are certain by the advanced method of isoperibolic calorimetry. It is 
established, that obtained data correlate with authentic partial and integral enthalpies of mixing from the literature. 
Thermodynamic properties of liquid alloys are simulated by own developed procedure with use of liquidus line coordinates of Al-
S  system phase diagrams. It is shown, that the simulated and experimental results will well be coordinated among themselves. 
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In the result of researchof the vacuum condensates, which were prepared by methods of electron-beam and laser 
evaporation, the model connecting the peculiarities of vacuum condensates formation with main condensation parameters was 
making. It was shown that degree of crystallites dispersion is one of the determinative parameters of the system state on nano-
level consideration of the matter, while the value of the chemical potentials of the agent microquantities, is determined by their
real crystallite structure.  
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There has been lead the analysis of thermodynamic properties of liquid ternary Ni-Al-  alloys and the boundary systems, 
established by the method of calorimetry. The areas of easy amorphization for the specified ternary alloys were simulated with 

application of these data. It is shown, that all the investigated nickel superalloys are characterized by strong interaction between 
dissimilar atoms. 
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The mathematical model of homogeneous crystallization process, uniting embryos formation and growth of crystals in the 
conditions of different ranges solution supersaturation on the crystallized matter, is built. Its adequacy is tested on the example 
of calcium sulphate dihydrate homogeneous crystallization. 
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0
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.

 39,35 (ln(x1
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/x1

0( )
) = 8,85 – -

), .
,

,
, -
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 539.266; 538.214 

. , . . , . , . , - . ,
. , ., . , - . ,

. , . . .

 AL-MN 

 Al-Mn -
 ~50 .  (MoK )

 ( )  ( ). -
,  Al-Mn -

. , -
' ,
.  9 – 25 

–1
,

 0,5-0,4 , .

The X-ray diffraction experiments for the liquid Al–Mn alloys was carried out in a wide concentration range at temperatures 
approximately 50 K higher than the liquidus temperature. The structure factors (SF) and radial distribution functions (RDF) of 
atoms were calculated from the X-ray scattering (MoK ) intensity curves. The analysis of X-ray data showed that the essential 
changes of local atomic structure of the liquid Al–Mn alloys was in Al-rich region. It have been established, that the concentration 
dependence of the nearest-neighbor distance is characterized by negative deviations from a linear. This fact denotes the priority 
of heteroatomic interaction in liquid binary alloys. The prepeak existence in the range from 9 to 25 nm

-1
of diffraction vector 

values is the peculiarity of the obtained structure factor functions. The prepeaks caused by specific arrangement of atoms at 
distances of 0,4-0,5 nm in dependence of alloy composition. 

.  – 

- , , -
,

.
-

, -
, , -

, ' , ,
 [3]. 

-
 3d  4d – 

 Al. ' ,

, , ,
. -

-
,

,
. -

'
.

, ,
 Al-M (M – 3d ), 

, -
 (3d  4d – ).

,
,

 3d- .
, -

 Al-M 
(M = Co, Ni, Cu) [5; 6; 7]. -

-
 Al-Mn. 

' . -
 Al ( 999)  Mn 

(99,7 %) -
-2 -

. -
 0,25 % . -

 ( )  6 
 28-30 ,

1773 .
,

. -
-

 1,5-2 
.

-
 Al-Mn  14,3, 20, 26,7, 50  70 . % Mn 

 ~ 50 K 
.

-
.

, -

. -

" " -
-  MoK  –

 (  = 0,071069 ), -
,

 ZrO2  Y2O3 -
, -

-
.

-
-
-

 [10]. 
-
-

 [1] -
a(S).

g(r) :
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( ) ( ) ( )
max

min

2

2

0

1
1 1 sin

2

S

S

i i

i

g r S a S Sr dS

rp n K

= + −

π

  (1) 

0 – -

, 4 sinS = π θ λ  – 

,  – , λ – 
, ni – -

i– , 2

i
K -

i- , -
. -

 9 
– 125 

-1
. -  – , -

-
 [9]. 

( ) :

( )

( ) ( )
max

min

2

2 2

04 4

2
1 sin

i i

i

S

S

r r r n K

r
S a S Sr dS

π ρ = π ρ +

+ −
π

,          (2) 

( ) ( )i i j ij

i j

r n K K rρ = ρ -

, ( )ij rρ -

 j-  i- .

, -
,

, -
Ki. ' ,
, -

, ,
 –  ( 1 ),  ( 1 )

 ( 1 )  [8]. -
-

 ( )
-  (PSEUDO-VOIGT):  

( ) ( )

( )
( )

2 2

2

2

ln2
:

( )
0,5 ln2

:
1 ln2

b S
h e S

b
F S

h
S

bb S

− ∆
⋅ ∆ <

∆ =
∆ >

− + ∆

,   (3)  

S = S – SM, SM – , h – 
, b = 2,772 / l (l – 
).

. -
a(S)

 Al-Mn .1 -
 Mn (1533 K) [4]  Al (973 K) [5]. 

. 1 , -

,  Mn  ~20,0 
. %. ,

 ~30 . % -
-

 (9 – 25 
-1
), -

 ( ) ( .1 ).  1 -

: S1 – , R1 – 
,

( )g r

-
.

1,  1 -

1 , -
, .

, -
 Al85,7Mn14,3 – 

 S -
-

 9 –25 
-1
,

.

20               40               60               80              100             120 

8

6

4

2

0

0

14,3 

20 

27,6 

50 

70 

100 

.  %  Mn

S, 
-1

a(S) ( )

10                    15                      20      

0 ,6

0,5

0,4

0,3

0,2

0,1

0

S , 
–1

a(S )

2
1

3

4
5

6

7

( )

.1.  Al-Mn  50  ( ),
 S ( ): 1 – 14,3; 2 – 20; 3 – 26,7; 4 – 50; 5 – 70 a . % Mn; 6 – Mn; 7 – Al.  

 1 .  Al-Mn 

Mn, . % T, K S1,
-1 

R1, Sp,
-1

Rp, A1 1
min

A1 A1

0 973 27,0 0,279 - - 8,0 11,6 8,6 9,4

14,3 1273 28,2 0,270 15,5 0,50 7,0 10,5 7,9 8,5

20 1353 28,3 0,269 15,8 0,49 8,5 11 9,1 9,5

26,7 1253 29,0 0,268 17,5 0,44 7,2 9,9 7,6 8,2

50 1423 28,6 0,264 19,0 0,41 7,3 10,5 8,0 8,6

70 1583 28,9 0,264 19,6 0,39 7,6 10,9 8,9 9,1

100 1533 28,4 0,265 - - 9,3 12,7 12,0 11,3
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 Al80Mn20

Al60Mn40  [11; 12], -
 Al-Ni, Al-Co  Al-Cu [5; 6; 7]. 

,
 9 -35 

-1

,
- .

- .
 (Sp) . 1. -

, -

, -
, -

 26,7 . % Mn.  
 R1  Mn -

' -
, -

-
 [2]. , -

-
 0 -14,3 . % Mn, -

-
 Al-Mn.  

-
 Al-Mn  13,5 

22,6 . % Mn [13]. -

,
-

,
, -
.

 (Rp)
, -

,

, 7,73p pR S⋅ = , Sp –

. Rp ( -
 1) -
. , -

.
, -

, -
.

- .
. -

 Al-Mn -
. -

 9-25 
-1

.

-
 14,3 . % Mn. 

 Al30Mn70 -
.

R1

,
-

. , -
-

.
-

, ' -
 [2]. 
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 544.354.5 

. , . . ., . , . . .,
. , ., . , .- .

-
. -

. - .

Electrochemical properties of electrolytes with solvates as ionogenic component are investigated. The method of lithium 
salts solvates with dimethylsulfone receipt and cleaning is developed. Work of lithium-ion accumulators models is shown with 
the use of the developed electrolytes. 

' -
, -

. -
 ( )

, , -
.

,
. -

, -
.  [3] 
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. -
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 1
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: a) 1  LiClO4*(CH3)2SO2 – (EC/DEC/DMC), b) 1  LiClO4 – (EC/DEC/DMC) 

,
-
-

.

1. . 3.977.900  31. 08. 1976. 2. . ., . ., 
. ., . . -

 // -
: . VIII 

.  2004. 3. Xu K. Nonaqueous Liquid Electrolytes 
for Lithium-Based Rechargeable Batteries // Chem. Rev. – 2004. Vol 104, P. 
4303–4417 4. Xu K., Angell C. A. High Anodic Stability of a New Electrolyte 
Solvent // J. Electrochem. Soc. 1- 998. Vol. 145. 4. P. L70-L72 
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 661.183.2+541.128.13 

. , ., . , . . ,
. , . . , . , ., . , - .

 ( ) ,
 0,4-0,6 / . ,

, , , -
 (  0,25 / ) . ,

:  S 2  255-300º  350-390º. 
.  90 % -

 240-275º .

The systems containing 0,4-0,6 mmol/g of active bromine on activated carbon surface were obtained by original bromination 
methods. It was show that such Br may be easily substituted by sulfur and further hydrolyzed and oxidized to produced SO3H-
groups (up to 0,25 mmol/g). It was established by TGA and TPD-IR methods that obtained systems are thermaly stable –is 
characterized by maximum of SO2 desopbtion at 250-300ºC and 350-390ºC. These systems show medium catalytic activity in 
isopropanol dehydration. Temperature of 90 % isopropanol conversion is 240-275ºC. 
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 ( 1) -
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 12 ,
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2 -
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 ( 1
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-

.
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 7-8º / .

-
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-

, 1 2
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. , -

 ( 1 2)
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. – ., 1968. 3. . . ,
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2007.4. . ., . ., . ., . ., -

. . // . – 2007. –  15. – .70-73. 5. ISO 
1841-1:1996. 6. ISO 5931:2000. 7. Papirer E., Lacroix R., Donnet J.,. Nansé 
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. , ., . , . . ,
. , . . , . , - .

 Cu/M (M=Zn, Mn), 

,

 [Cu(L
1
/L

2
)][MCl4] (M = Zn, Mn; L

1
– 4,6,6- -1,9- -3,7- -3- ; L

2
– 1,15- -7,9,9-

-3,6,10,13- -6- ). ,
.

The catalytically active systems based on stone activated carbon and heterobimetallic complexes [Cu(L
1
/L

2
)][MCl4] (M = Zn, 

Mn; L
1

– 4,6,6-trimethyl-1,9-diamino-3,7-diaza nona-3- ne; L
2

– 1,15-dihydroxy-7,9,9-trimethyl-3,6,10,13-tetraz  pentadeca-6- n)
were obtained. It was shown that the support of the complexes on carbon surface stabilized their catalytically active state and
increased the reaction yield of hydrogen peroxide decomposition.  

-
,

, , -
, , . [1; 7]. 

-
 ( )

-
 [6; 8; 9]. -

,
-

. -
. ,

/ -
, -

.
,

, -
, -

,
.

,
[Cu(L1/L2)][MCl4] (M = Zn, Mn; L1 – 4,6,6- -1,9-

-3,7- - -3- ; L2 – 1,15- -7,9,9-
-3,6,10,13- - - -6- )

-
, , -

-

[2]. -
-
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 H2O2.
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2 2  30 %  HNO3 [4]. 

. -

2 2 ' -
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, , – 1·10-4 / ,
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2 2H O
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2 V P
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2 2O max OV V V∆ = − ,
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, -
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/ ,
 ( -

 50-65 .) -
 H2O2.

-
2 2 (

 20 %  5 ),
: > @ 2 2> @HNO3.

, , -
,
-

, -
 4-5 . -

, , , -

.
,

, -
. C

@ 2 2/[CuL2][ZnCl4]  45 %  5 -
,

@HNO3/[CuL2][ZnCl4] ( )
.

, , -
-

, -
 [5]. 

( ) ,
. -

 H2O2 :

Z + H2O2
1 1,k k−←→  Z·H2O2

2k
→  ½ O2 + H2O + Z, (1) 

 Z – , Z·H2O2 – -
.
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, -

,
 [7], -

, :

2 2

1

1
2 2

2 2

H O 2 M c H O

M H O I I

dc k K c c
r

d 1 K c K c

−

−
= − =

τ + +
  (2), 

2 2H Oc  – ,  – -

, I – , k2 – 
 (1), 

1 2

1
M

k k
K

k
−

+
=  – - .
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5

3

2

1

τ, õâ

ñ (Í
2
Î

2
), ì î ëü/ë

. 1. : 1 – , 2 – @ 2 2, 3 – [CuL
2
][ZnCl4],  

4 – /[CuL
2
][ZnCl4], 5 – /[CuL

2
][ZnCl4] ( ), 6 – @ 2 2/[CuL

2
][ZnCl4]

(2). -

,
2 2

1
M H OK c− >> 1 + KI I,  (2) -

:

2 2H O

2 c

dc
r k c

d
= − =

τ
.         (3) 

-

,
2 2

1
M H OK c− <<1+KI I,

 (2). 
 (2) 

:

2 2

1

2 2H O 2 M c H O

I I

dc k K c c
r

d 1 K c

−

= − =
τ +

.          (4) 

,  (1), -
:

i fC C
k
d→ ,                  (5) 

i f –  ( )  ( -
) , , kd – 

;
 (3)  (4) 

. -
,

.
-

 (5) , :

0 0( )d dk k

c i fc c c c e c 1 e− τ − τ
= + = + − ,  (6) 

0 – .
 (6),  (3)  (4) -

 (7)  (8), :

2 2

0 2 0

0 0

( )

( )

d d

d d

H O k k

2

k k

i f

dc
r k c e k c 1 e

d

k e k 1 e

− τ − τ

− τ − τ

′= − = + − =
τ

= + −

 (7) 

− −

− τ − τ

− τ − τ

′ ′
= + − =

+ +

= + −

1 1
0 2 0

1 1

( )

( )

d d

2 2 2 2

d d

2 2 2 2

k k2 M M

H O H O

I I I I

k k

i H O f H O

k K c k K c
r c e c 1 e

1 K c 1 K c

k c e k c 1 e

   (8), 

 k0i, k0f, k1i k1f – .  (7) 
(8) ,

.
,  "0" 

 "1" ( -
), , :

d

2 2 2 2

ko 0i 0f 0i 0f
H O H O 0f

d d

k k k k
c c k e

k k

− τ− −
= − τ − +            (9) 

1 1 1 1
1

d

2 2 2 2

ko i f i f
H O H O f

d d

k k k k
lnc lnc k e

k k

− τ− −
= − τ − +       (10), 

 k0i k0f – ,
 ( -

 "0"), k1i k1f – 
 "1". -

 (1)  (5) 
 H2O2, -

. -
:  "0" 

( -
)  " " ,  "1" 

( ) -
 " " .

(H2O2) = f(τ) -
 (9)  (10) 

Matlab [10]. -

 (9)  (10), 
 – ,

 (σ).
, ,

,  "1" 
 ( σ),

.
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.  "1"
-

k1i·10
3
,

.
-1

kd·10
2
,

.
-1

k1k·10
3
,

.
-1 k1i/kd·10

2
σ·10

5

 2,31 4,30 0,74 5,4 3,61 
@H2O2 0,59 2,45 0,22 2,4 1,00 

[CuL1][MnCl4] 54,9 9,30 0,54 59 3,51 
/[CuL1][MnCl4] 4,20 0,08 4,00 530 9,92 
@H2O2/[CuL1][MnCl4] 0,92 1,76 0,45 5,2 7,63 

[CuL2][MnCl4] 37,7 5,26 0,82 72 2,78 
/[CuL2][MnCl4] 4,12 1,21 1,82 34 3,29 
@H2O2/[CuL2][MnCl4] 1,20 0,79 0,52 15 3,05 

[CuL1][ZnCl4] 44,9 7,97 0,40 56 0,41 
/[CuL1][ZnCl4] 3,00 0,71 1,51 42 5,23 
@H2O2/[CuL1][ZnCl4] 0,91 3,97 0,55 2,3 3,12 

[CuL2][ZnCl4] 33,5 5,11 1,00 66 2,15 
/[CuL2][ZnCl4] 4,90 0,56 4,11 88 4,12 
@H2O2/[CuL2][ZnCl4] 2,62 1,41 1,61 19 1,52 

, -
-

 ( k1i·  10-
15 ). , -

,
k1i/kd .

- ,
k1i k1k,

. -
' -

, , -
, -

. -

. -
,

 –O  – .

 (  0,6 / ), -
 CuL2+ -

. -

, ,
Cu2+

↔Cu+. :
/[CuL2][ZnCl4]> /[CuL1][MnCl4] > /[CuL2][MnCl4]> 
/[CuL1][ZnCl4] , , -

,  [2] -
2 2,

-
.

@H2O2

, -
2 2. ,

, @H2O2 -
,

k1i k1k ( ).
' -

 ( ) -
@H2O2. ,

, -
. -

 (  1,5-2 
) .

, -
-
-
-

.

1. . , -
./ . ., . ., . . . – .,

2002. 2. ., ., . . -
1/ 2 ( 1 = Ni, Cu; 2 = Mn, Zn) -

 // . .
. – 2005. – . 41,  1. – .17-23. 3.  / 

. . . – . – 1986. 4. . . .
– ., 1981. 5. ., . . . – .,
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with transition metal complexes containing sulfur ligands // Coordination 
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azides and amination reactions catalyzed by transition metal complexes  
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. , ., . , - . ,
. , . . , . , . .

 Si –  i Si – Al – 

-
 Si – Dy (Ho, Er)  Si – Al – Dy(Ho, Er)  – 

 1800 ± 10 . ,
. -

, , .

The thermochemical properties of melts of binary systems Si – Dy (Ho, Er) and three-component systems Si – Al – Dy(Ho, Er) along

one – two cuts for each system at 1880 ± 10  are studied by the method of a calorimetry in the isothermal hyperthermal calorimeter. 
Established, that all studied alloys will be derivated with allocation of a significant amount of a heat. In all an interval of structures the 
thermochemical properties are counted from the data for double boundary systems on equations Bonnier-Cabo, Tup, Colier. 

, ,
, ,

 [1; 2]. ,
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,
. -

.

-

Si – Dy(Ho, Er)  Si – Al – 

Dy(Ho, Er)  – 
 1800 ± 10 . ,

.
, -

,
 ( . 1). 

 1 .  ( / )
 Si – 

 Si – La (1821 K)  Si – Gd (1813 K) 

– H – H γ ⋅ 10
3

– H – H γ ⋅ 10
3

0 0 117 0,44 0 164 0,188 

0,02 3,2 129 0,199 3,5 181 0,061 

0,04 6,4 155 0,036 7,2 191 0,0314 

0,06 9,1 182 0,006 11,9 195,5 0,0232 

0,08 12,4 186 0,005    

0,1 15,0 180 0,007    

0,12 18,8 167 0,016    

0,14 22,2 155 0,036    

 Si – Dy (1785 K)  Si – Ho (1827 K) 

0 0 140 0,964 0 198 0,022 

0,02 4 187 0,0432 3,1 176,5 0,090 

0,04 7,3 205 0,0132 6,5 151 0,486 

 Si – Er (18635 K)    

0 0 173 0,141    

0,02 2,9 180 0,089    

0,04 6,9 158 0,3714    

0,06 10 147 0,756    

 Si – La  1920  [1]. 
 ( / ).

Lax 0 0,05 0,10 0,15 0,20 0,25 0,30 0,35 

LaH− 162 ± 7 160 ± 4 155 ± 4 148 ± 3 139 ± 3 122 ± 3 94 ± 3 53 ± 5 

SiH− 0 0,1 ± 3 0,5 ± 3 1 ± 3 4 ± 3 8 ± 3 19 ± 3 39 ± 3 

H− 0 8,1 ± 0,2 16 ± 0,3 23,5 ± 0,4 30,7 ± 0,5 36,8 ± 0,6 41,6 ± 0,6 44 ± 0,7 

. 1. C H  –  – -  ( )  ( )

H γ .

. 1. -
, -

fH .

,
,

. -
, ,

, -
, -

.  Dy, Er, Ho 

-
, ,

-

. H  ( / ).
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x 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 

Si – Dy – 20 – 35 – 50 – 64 – 69 – 65 – 50 – 35 – 20 
Si – Ho – 20 – 40 – 60 – 75 – 81 – 76 – 63 – 42 – 20 
Si – Er – 20 – 40 – 60 – 80 – 85 – 75 – 60 – 40 – 20 

,
 Si – Ho(Er) -

,  Si – Dy -
. -

 Si – Ho(Er). 

-
, - ,

, .

) -

12 12 23 23 3113 13( 1 , ) ( , 1 )1 2 2 3 ( ,1 2 2 3 1 3( ) ( )1 3 1 3

31

12 23 2 13

2 2

xx
H H H (1 x ) H ;

(1 x ) (1 x ) xxx x x x x x x x x x
x x x x

= − = = = − = =
+ +

∆ = ∆ + ∆ + − ∆
− −

)

12 12 23 23 3113 13( 1 , ) ( , 1 )1 2 2 3 ( ,1 2 2 3 1 3( ) ( )1 3 1 3

231

12 23 2 13

2 2

xx
H H H (1 x ) H .

(1 x ) (1 x ) xxx x x x x x x x x x
x x x x

= − = = = − = =
+ +

∆ = ∆ + ∆ + − ∆
− −

, - -

H , -
. , -

 Si – Al – Dy(Ho, Er) H
 Si – M  (Dy, Ho, Er). 

1. . ., . ., . .
 // .

. . − 1980. − . 54,  2. − . 485-486. 2. Meschel S.V., Kleppa 
O.J. Thermochemistry of alloys transition metals and lantanide melts with 
some IIIB and IVB elements in the periodic table // J. Alloys. Comp. – 2001. 
– Vol. 321,  1. – P. 183-200. 

 12 .0 2 . 08  


	‎E:\ХИМФАК\Вісник\Готово\вестник_46\vknyx_2008_46_1.pdf‎
	‎E:\ХИМФАК\Вісник\Готово\вестник_46\vknyx_2008_46_2.pdf‎
	‎E:\ХИМФАК\Вісник\Готово\вестник_46\vknyx_2008_46_3.pdf‎
	‎E:\ХИМФАК\Вісник\Готово\вестник_46\vknyx_2008_46_4.pdf‎
	‎E:\ХИМФАК\Вісник\Готово\вестник_46\vknyx_2008_46_5.pdf‎
	‎E:\ХИМФАК\Вісник\Готово\вестник_46\vknyx_2008_46_6.pdf‎
	‎E:\ХИМФАК\Вісник\Готово\вестник_46\vknyx_2008_46_7.pdf‎
	‎E:\ХИМФАК\Вісник\Готово\вестник_46\vknyx_2008_46_8.pdf‎
	‎E:\ХИМФАК\Вісник\Готово\вестник_46\vknyx_2008_46_9.pdf‎
	‎E:\ХИМФАК\Вісник\Готово\вестник_46\vknyx_2008_46_10.pdf‎
	‎E:\ХИМФАК\Вісник\Готово\вестник_46\vknyx_2008_46_11.pdf‎
	‎E:\ХИМФАК\Вісник\Готово\вестник_46\vknyx_2008_46_12.pdf‎
	‎E:\ХИМФАК\Вісник\Готово\вестник_46\vknyx_2008_46_13.pdf‎
	‎E:\ХИМФАК\Вісник\Готово\вестник_46\vknyx_2008_46_14.pdf‎
	‎E:\ХИМФАК\Вісник\Готово\вестник_46\vknyx_2008_46_15.pdf‎
	‎E:\ХИМФАК\Вісник\Готово\вестник_46\vknyx_2008_46_16.pdf‎
	‎E:\ХИМФАК\Вісник\Готово\вестник_46\vknyx_2008_46_17.pdf‎
	‎E:\ХИМФАК\Вісник\Готово\вестник_46\vknyx_2008_46_18.pdf‎
	‎E:\ХИМФАК\Вісник\Готово\вестник_46\vknyx_2008_46_19.pdf‎
	‎E:\ХИМФАК\Вісник\Готово\вестник_46\vknyx_2008_46_20.pdf‎
	‎E:\ХИМФАК\Вісник\Готово\вестник_46\vknyx_2008_46_21.pdf‎
	‎E:\ХИМФАК\Вісник\Готово\вестник_46\vknyx_2008_46_22.pdf‎

